Mathematische Annalen

, Volume 253, Issue 1, pp 29–42 | Cite as

Algebraic classification of linking pairings on 3-manifolds

  • Akio Kawauchi
  • Sadayoshi Kojima
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, E.H., Jr.: Generalizations of the Kervaire invariant. Ann. Math.95, 368–384 (1972)Google Scholar
  2. 2.
    Burger, E.: Über Gruppen mit Verschlingungen. J. Reine Angew. Math.188, 193–200 (1950)Google Scholar
  3. 3.
    Epstein, D.B.A.: Embedding punctured manifolds. Proc. Amer. Math. Soc.16, 175–176 (1965)Google Scholar
  4. 4.
    Fox, R.H.: Quick trip through knot theory. Topology of 3-manifolds and related topics, ed. Fort, M.K., Jr. Englewood Cliffs, NJ: Prentice Hall 1961Google Scholar
  5. 5.
    Fox, R.H.: Review of [2]. Math. Rev.13, 204 (1952)Google Scholar
  6. 6.
    Guillou, L., Marin, A.: Une extension d'un théorème de Rohlin sur la signature. C. R. Acad. Sci. Paris285, Série A 95–98 (1977)Google Scholar
  7. 7.
    Hantzch, W.: Einlagerung von Mannigfaltigkeiten in euklidische Räume. Math. Z.43, 38–58 (1938)Google Scholar
  8. 8.
    Hirzebruch, F., Neumann, W.D., Koh, S.S.: Differentiable manifolds and quadratic forms. New York: Marcel Dekker, 1971Google Scholar
  9. 9.
    Kawauchi, A.: Onn-manifolds whose punctured manifolds are imbeddable in (n+1)-spheres and spherical manifolds. Hiroshima Math. J.9, 47–57 (1979)Google Scholar
  10. 10.
    Milnor, J., Husemoller, D.: Symmetric bilinear forms. Ergebnisse 73. Berlin, Heidelberg, New York: Springer-Verlag 1973Google Scholar
  11. 11.
    Seifert, H.: Verschlingungsinvarianten. Sitzungsber. Akad. Berlin, Phys.-Math. Kl.16, 811–828 (1933)Google Scholar
  12. 12.
    Seifert, H., Threlfall, W.: Lehrbuch der Topologie. Leipzig: Teubner 1934Google Scholar
  13. 13.
    van Kampen, E.R.: Invariants derived from looping coefficients. Amer. J. Math.60, 595–610 (1938)Google Scholar
  14. 14.
    Vinogradov, I.M.: An introduction to the theory of numbers. London, New York: Pergamon Press 1955Google Scholar
  15. 15.
    Wall, C.T.C.: Quadratic forms on finite groups, and related topics, Topology2, 281–298 (1964)Google Scholar
  16. 16.
    Zeeman, E.C.: Twisting spun knots. Trans. Amer. Math. Soc.115, 471–495 (1965)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Akio Kawauchi
    • 1
  • Sadayoshi Kojima
    • 2
  1. 1.Institute for Advanced StudyPrincetonUSA
  2. 2.Columbia UniversityNew YorkUSA

Personalised recommendations