Histochemistry and Cell Biology

, Volume 105, Issue 6, pp 479–485 | Cite as

Nuclear image analysis of immunohistochemically stained cells in breast carcinomas

  • G. Haroske
  • V. Dimmer
  • Katrin Friedrich
  • W. Meyer
  • Berit Thieme
  • F. Theissig
  • K. D. Kunze
Original Paper

Abstract

Hitherto, the relationship between malignancy-associated morphological features in single tumour cells and the expression of markers indicating functional properties of these cells remained widely unknown. This study was aimed at describing differences in the size, shape and chromatin structure between tumour cells with different marker expression for progesterone receptors (PgR) and p53. Two series of breast cancers, consisting of 50 PgR-positive, and 39 p53-negative and 49 p53-positive mammary carcinomas, were investigated. The immunohistochemical staining was performed on paraffin sections using 3-amino-9-ethylcarbazole as the chromogenic substrate. By means of a cytometry workstation equipped with a computer-controlled motorised scanning stage, about 500 positive and negative tumour cells in each case were localised in the microscope and categorised by a scoring system for their staining intensity. After destaining, the tissue sections were Feulgen-stained. Then, all the tumour cells were relocated automatically and analysed by high resolution image cytometry. Among the numerous size, shape, and texture features used in the system, several variables of the nuclear contour and chromatin structure were found to be significantly different between the positive and negative tumour cell populations. Nuclei without PgR had more malignancy-associated morphological features than PgR-positive cells. Whereas p53-negative nuclei had a higher degree of regularity, their positive counterparts exhibited higher DNA ploidy values.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allred CG, Clark GM, Elledge R, Fuqua SAW, Brown RW, Chamness GC, Osborne CK, McGuire WL (1993) Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer. J Natl Cancer Inst 85:200–206PubMedGoogle Scholar
  2. Auer G, Eriksson E, Azavedo E, Caspersson T, Wallgren A (1984) Prognostic significance of nuclear DNA content in mammary adencarcinomas in humans. Cancer Res 44:394–396PubMedGoogle Scholar
  3. Auer GU, Heselmeyer KM, Steinbeck RG, Munck-Wikland E, Zetterberg AD (1994) The relationship between aneuploidy and p53 over expression during genesis of colorectal adenocarcinoma. Virchows Arch 424:343–347PubMedGoogle Scholar
  4. Barnes DM, Dublin EA, Fisher CJ, Levison DA, Millis RR (1993) Immunohistochemical detection of p53 protein in mammary carcinoma: an important new independent indicator of prognosis? Hum Pathol 24:469–476PubMedGoogle Scholar
  5. Battifora H (Ed) (1994) p53 Immunohistochemistry: a word of caution. Hum Pathol 25:435–437Google Scholar
  6. Bloom HJG, Richardson WW (1957) Histologic grading and prognosis in breast cancer. Br J Cancer 11:359–377PubMedGoogle Scholar
  7. Bosari S, Lee AKC, Viale G, Heatley GJ, Coggi G (1992) Abnormal p53 immunoreactivity and prognosis in node-negative breast carcinomas with long-term follow up. Virchows Arch 421:291–295Google Scholar
  8. Cattoretti G, Rilke F, Andreola S, Amato LD, Delia D (1988) p53 expression in breast cancer. Int J Cancer 41:178–183PubMedGoogle Scholar
  9. Clark GM, McGuire WL, Hubay CA (1983) Progesterone receptors as a prognostic factor in stage 2 breast cancer. N Engl J Med 309:1343–1347PubMedGoogle Scholar
  10. Davidoff AM, Herndon JE, Glover NS, Kerns B-JM, Pence JC, Iglehart JD, Marks JR (1991) Relation between p53 overexpression and established prognostic factors in reast cancer. Surgery 110:259–264PubMedGoogle Scholar
  11. Domagala W, Harezga B, Szadowska A, Markiewski M, Weber K, Osborn M (1993) Nuclear p53 protein accumulates preferentially in medullary and high-grade ductal but rarely in lobular breast carcinomas. Am J Pathol 142:669–674PubMedGoogle Scholar
  12. Friedrich K, Dimmer V, Haroske G, Loßnitzer A, Kasper M, Theissig F, Kunze KD (1995) Expression of p53 and bcl-2 in correlation to clinicopathological parameters, hormone receptor status and DNA ploidy in breast cancers. Pathol Res Pract (in press)Google Scholar
  13. Gazitt Y, Erdos GW (1994) Fluctuations and ultrastructural localization of oncoproteins and cell cycle regulatory proteins during growth and apoptosis of synchronized AGF cells. Cancer Res 54:950–956PubMedGoogle Scholar
  14. Göhring U-J, Heckel C, Vierbuchen M, Titius B, Scharl A (1993) Der immuhistochemische Nachweis des p53-Proteins in Paraffin eingebetteten Geweben primärer humaner Mammakarzinome und seine klinische Wertigkeit. Verh Dtsch Ges Pathol 77:302Google Scholar
  15. Haroske G, Meyer W, Dimmer V, Kunze KD, Theissig F (1993) Feasibility and limitations of a cytometric DNA ploidy analysis in tissue sections. Zentralbl Pathol 149:407–419Google Scholar
  16. Haroske G, Meyer WD, Theissig F, Kunze KD (1995) Increase of precision and accuracy of DNA cytometry by correcting diffraction and glare errors. Anal Cell Pathol 9:1–12PubMedGoogle Scholar
  17. Hurlimann J (1993) Prognostic value of p53 protein expression in breast carcinomas. Pathol Res Pract 189:996–1003PubMedGoogle Scholar
  18. WHO (1981) International histological classification of tumors. Histological typing of breast tumours. 2nd edn., WHO: GenevaGoogle Scholar
  19. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311PubMedGoogle Scholar
  20. Kunze KD, Haroske G, Dimmer V, Meyer W, Theissig F (1989) Grading and prognosis of invasive ductale mammary carcinoma by nuclear image analysis in tissue sections. Pathol Res Pract 185:689–693PubMedGoogle Scholar
  21. Lane DP (1992) p53, guardian of the genome. Nature 358:15–16PubMedGoogle Scholar
  22. Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene. Nature 351:453–456PubMedGoogle Scholar
  23. Lipponen P, Ji H, Aaltomaa S, Syrjõnen S, Syrjõnen K (1993) p53 protein expression in breast cancer as related to histopathological characteristics and prognosis. Int J Cancer 55:51–56PubMedGoogle Scholar
  24. Mattfeldt T, Neurohr W, Müller A, Klinga K (1985) Morphometrische Korrelate des Steroidrezeptorgehaltes duktal-invasiver Mammakarzinome. Verh Dtsch Ges Pathol 69:350–355PubMedGoogle Scholar
  25. Miller C, Koeffler HP (1993) p53 mutations in human cancer. Leukemia 7 [Suppl 2]:18–21Google Scholar
  26. Ostrowski JL, Sawan A, Henry L, Wright C, Hennessy C, Lennard TJW, Agnus B, Horne CHW (1991) p53 expression in human breast cancer related to survival and prognostic factors: an immunohistochemical study. J Pathol 164:75–81PubMedGoogle Scholar
  27. Porter PL, Gown AM, Kramp SG, Coltrera MD (1992) Widespread p53 overexpression in human malignant tumors. Am J Pathol 140:145–153PubMedGoogle Scholar
  28. Quiao L, Peihong W, Ghaleb AH, Pizzolo JG, Miller TB, Melamed MR (1994) Bivariate flow cytometric analysis of p53 and DNA content in hepatocellular carcinoma. Anal Quant Cytol Histol 16:124–130PubMedGoogle Scholar
  29. Remmele W, Stegner HE (1987) Vorschlag zur einheitlichen Definition eines Immunreaktiven Score (IR) für den immun-histochemischen Estrogenrezeptor-Nachweis (ER-IRA) im Mammakarzinomgewebe. Pathologe 8:138–140PubMedGoogle Scholar
  30. Schenk U, Burger G, Jütting U, Peters-Welte C, Eiermann W (1985) Punktionszytologie der Mamma: Korrelation visueller und bildanalytischer Untersuchungen mit dem Hormonrezeptorstatus. Geburtshilfe Frauenheilkd 45:17–21PubMedGoogle Scholar
  31. Schenk U, Eiermann W, Burger G, Gais P, Jütting U, Rodenacker K, Schenk UB (1987) Visual and cytometric grading of breast carcinoma specimens: correlations with the hormone receptor status. Academic Press. London, pp 407–410Google Scholar
  32. Silvestrini R, Benini E, Daidone MG, Veneroni S, Borachi P, Cappelletti V, Fronzo G di, Veronesi U (1993) p53 as an independent prognostic marker in lymph node-negative breast cancer patients. J Natl Cancer Inst 85:965–970PubMedGoogle Scholar
  33. Singh S, Simon M, Meybohm I, Jantke I, Maass H, Goedde HW (1993) Human breast cancer: Frequent p53 allele loss and protein overexpression. Hum Genet 90:635–640PubMedGoogle Scholar
  34. Stegner H-E, Jonat W, Mass H (1986) Immunihistochemischer Nachweis nukleärer Östrogenrezeptoren mit monoklonalen Antikörpern in verschiedenen Typen des Mammakarzinoms. Pathologe 7:156–163PubMedGoogle Scholar
  35. Thomas DB (1986) Hormones and hormone receptors in the etiology of breast cancer. Breast Cancer Res Treat 7:S11-S22PubMedGoogle Scholar
  36. Vojtesek B, Bartek J, Midgley CA, Lane DP (1992) An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J Immunol Methods 151:237–244PubMedGoogle Scholar
  37. Weinert T, Lydall D (1993) Cell cycle checkpoints genetic instability and cancer. Semin Cancer Biol 4:129–140PubMedGoogle Scholar
  38. Wynford-Thomas D (1992) P53 in tumour pathology: can we trust immunocytochemistry? J Pathol 166:329–330PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • G. Haroske
    • 1
  • V. Dimmer
    • 1
  • Katrin Friedrich
    • 1
  • W. Meyer
    • 1
  • Berit Thieme
    • 1
  • F. Theissig
    • 1
  • K. D. Kunze
    • 1
  1. 1.Institute of PathologyTechnical University DresdenDresdenGermany

Personalised recommendations