Mathematische Annalen

, Volume 261, Issue 4, pp 515–534 | Cite as

Factoring polynomials with rational coefficients

  • A. K. Lenstra
  • H. W. LenstraJr.
  • L. Lovász
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.M., Odlyzko, A.M.: Irreducibility testing and factorization of polynomials, to appear. Extended abstract: Proc. 22nd Annual IEEE Symp. Found. Comp. Sci., pp. 409–418 (1981)Google Scholar
  2. 2.
    Brentjes, A.J.: Multi-dimensional continued fraction algorithms. Mathematical Centre Tracts 145. Amsterdam: Mathematisch Centrum 1981Google Scholar
  3. 3.
    Cantor, D.G.: Irreducible polynomials with integral coefficients have succinct certificates. J. Algorithms2, 385–392 (1981)CrossRefGoogle Scholar
  4. 4.
    Cassels, J.W.S.: An introduction to the geometry of numbers. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  5. 5.
    Ferguson, H.R.P., Forcade, R.W.: Generalization of the Euclidean algorithm for real numbers to all dimensions higher than two. Bull. Am. Math. Soc.1, 912–914 (1979)Google Scholar
  6. 6.
    Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers. Oxford: Oxford University Press 1979Google Scholar
  7. 7.
    Knuth, D.E.: The art of computer programming, Vol. 2, Seminumerical algorithms. Reading: Addison-Wesley 1981Google Scholar
  8. 8.
    Lenstra, A.K.: Lattices and factorization of polynomials, Report IW 190/81. Amsterdam: Mathematisch Centrum 1981Google Scholar
  9. 9.
    Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. (to appear)Google Scholar
  10. 10.
    Mignotte, M.: An inequality about factors of polynomials. Math. Comp.28, 1153–1157 (1974)Google Scholar
  11. 11.
    Pritchard, P.: A sublinear additive sieve for finding prime numbers. Comm. ACM24, 18–23 (1981)Google Scholar
  12. 12.
    Barkley Rosser, J., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math.6, 64–94 (1962)Google Scholar
  13. 13.
    Yun, D.Y.Y.: The Hensel lemma in algebraic manipulation. Cambridge: MIT 1974; reprint: New York: Garland 1980Google Scholar
  14. 14.
    Zassenhaus, H.: On Hensel factorization. I. J. Number. Theory1, 291–311 (1969)Google Scholar
  15. 15.
    Zassenhaus, H.: A remark on the Hensel factorization method. Math. Comp.32, 287–292 (1978)Google Scholar
  16. 16.
    Zassenhaus, H.: A new polynomial factorization algorithm (unpublished manuscript, 1981)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • A. K. Lenstra
    • 1
  • H. W. LenstraJr.
    • 2
  • L. Lovász
    • 3
  1. 1.Mathematisch CentrumAmsterdamThe Netherlands
  2. 2.Mathematisch InstituutUniversiteit van AmsterdamAmsterdamThe Netherlands
  3. 3.Bolyai InstituteA. József UniversitySzegedHungary

Personalised recommendations