Mathematische Annalen

, Volume 261, Issue 4, pp 515–534 | Cite as

Factoring polynomials with rational coefficients

  • A. K. Lenstra
  • H. W. LenstraJr.
  • L. Lovász


Rational Coefficient Factoring Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M., Odlyzko, A.M.: Irreducibility testing and factorization of polynomials, to appear. Extended abstract: Proc. 22nd Annual IEEE Symp. Found. Comp. Sci., pp. 409–418 (1981)Google Scholar
  2. 2.
    Brentjes, A.J.: Multi-dimensional continued fraction algorithms. Mathematical Centre Tracts 145. Amsterdam: Mathematisch Centrum 1981Google Scholar
  3. 3.
    Cantor, D.G.: Irreducible polynomials with integral coefficients have succinct certificates. J. Algorithms2, 385–392 (1981)CrossRefGoogle Scholar
  4. 4.
    Cassels, J.W.S.: An introduction to the geometry of numbers. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  5. 5.
    Ferguson, H.R.P., Forcade, R.W.: Generalization of the Euclidean algorithm for real numbers to all dimensions higher than two. Bull. Am. Math. Soc.1, 912–914 (1979)Google Scholar
  6. 6.
    Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers. Oxford: Oxford University Press 1979Google Scholar
  7. 7.
    Knuth, D.E.: The art of computer programming, Vol. 2, Seminumerical algorithms. Reading: Addison-Wesley 1981Google Scholar
  8. 8.
    Lenstra, A.K.: Lattices and factorization of polynomials, Report IW 190/81. Amsterdam: Mathematisch Centrum 1981Google Scholar
  9. 9.
    Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. (to appear)Google Scholar
  10. 10.
    Mignotte, M.: An inequality about factors of polynomials. Math. Comp.28, 1153–1157 (1974)Google Scholar
  11. 11.
    Pritchard, P.: A sublinear additive sieve for finding prime numbers. Comm. ACM24, 18–23 (1981)Google Scholar
  12. 12.
    Barkley Rosser, J., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math.6, 64–94 (1962)Google Scholar
  13. 13.
    Yun, D.Y.Y.: The Hensel lemma in algebraic manipulation. Cambridge: MIT 1974; reprint: New York: Garland 1980Google Scholar
  14. 14.
    Zassenhaus, H.: On Hensel factorization. I. J. Number. Theory1, 291–311 (1969)Google Scholar
  15. 15.
    Zassenhaus, H.: A remark on the Hensel factorization method. Math. Comp.32, 287–292 (1978)Google Scholar
  16. 16.
    Zassenhaus, H.: A new polynomial factorization algorithm (unpublished manuscript, 1981)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • A. K. Lenstra
    • 1
  • H. W. LenstraJr.
    • 2
  • L. Lovász
    • 3
  1. 1.Mathematisch CentrumAmsterdamThe Netherlands
  2. 2.Mathematisch InstituutUniversiteit van AmsterdamAmsterdamThe Netherlands
  3. 3.Bolyai InstituteA. József UniversitySzegedHungary

Personalised recommendations