Advertisement

Mathematische Annalen

, Volume 277, Issue 2, pp 249–265 | Cite as

Tournaments, flags, and harmonic maps

  • F. E. Burstall
  • S. M. Salamon
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aithal, A.R.: Harmonic maps fromS 2 toG 2,5. J. Lond. Math. Soc.32, 572–576 (1985)Google Scholar
  2. 2.
    Atiyah, M.F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Phil. Trans. R. Soc. Lond. A308, 523–615 (1982)Google Scholar
  3. 3.
    Borel, A., Hirzebruch, F.: Characteristic classes and homogeneous spaces, I. Am. J. Math.80, 458–538 (1958)Google Scholar
  4. 4.
    Burstall, F.E.: Twistor fibrations of flag manifolds and harmonic maps of a 2-sphere into a Grassmannian. In: Differential geometry. Pitman Research Notes in Mathematics 131. London: Pitman 1985Google Scholar
  5. 5.
    Burstall, F.E.: A twistor description of harmonic maps of a 2-sphere into a Grassmannian. Math. Ann.274, 61–74 (1986)Google Scholar
  6. 6.
    Burstall, F.E., Wood, J.C.: The construction of harmonic maps into complex Grassmannians. J. Differ. Geom.23, 255–297 (1986)Google Scholar
  7. 7.
    Eells, J., Salamon, S.: Twistorial construction of harmonic maps of surfaces into four manifolds. Ann. Scuola Norm. Pisa12, 589–640 (1985)Google Scholar
  8. 8.
    Eells, J., Wood, J.C.: Harmonic maps from surfaces to complex projective spaces. Adv. Math.49, 217–263 (1983)Google Scholar
  9. 9.
    Erdem, S., Wood, J.C.: On the construction of harmonic maps into a Grassmannian. J. Lond. Math. Soc.28, 161–174 (1983)Google Scholar
  10. 10.
    Fried, E., Laskar, H.: Simple tournaments. Notices A.M.S.18, 395 (1971)Google Scholar
  11. 11.
    Grothendieck, A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann. Am. J. Math.79, 121–138 (1957)Google Scholar
  12. 12.
    Harder, G., Narasimhan, M.S.: On the cohomology groups of moduli spaces of vector bundles over curves. Math. Ann.212, 215–248 (1975)Google Scholar
  13. 13.
    Koszul, J.L., Malgrange, B.: Sur certaines structures fibrées complexes. Arch. Math.9, 102–109 (1958)Google Scholar
  14. 14.
    Moon, J.W.: Topics in tournaments. New York: Holt, Reinhart, and Winston 1968Google Scholar
  15. 15.
    Moon, J.W.: Embedding tournaments in simple tournaments. Discrete Math.2, 37–66 (1972)Google Scholar
  16. 16.
    Müller, V., Nešetfil, J., Pelant, J.: Either tournaments or algebras. Discrete Math.11, 37–66 (1975)Google Scholar
  17. 17.
    Rawnsley, J.H.:f-structures,f-twistor and harmonic maps. Geometry Seminar L. Bianchi. Lect. Notes Math. 1164. Berlin, Heidelberg, New York: springer 1986Google Scholar
  18. 18.
    Reid, K.B., Beineke, L.W.: Tournaments. In: Selected topics in graph theory. Beineke, L.W., Wilson, R.J. (eds.). London: Academic Press 1978Google Scholar
  19. 19.
    Salamon, S.: Harmonic and holomorphic maps. In: Geometry Seminar L. Bianchi. Lect. Notes Math. 1164. Berlin, Heidelberg, New York: Springer 1986Google Scholar
  20. 20.
    Salamon, S.: Minimal surfaces in symmetric spaces. In: Differential geometry. Pitman Research Notes in Mathematics 131. London: Pitman 1985Google Scholar
  21. 21.
    Uhlenbeck, K.K.: Harmonic maps into Lie groups (Classical solutions of the chiral model). J. Differ. Geom. (to appear)Google Scholar
  22. 22.
    Valli, G.: On the energy spectrum of harmonic 2-spheres in unitary groups. Warwick preprint, 1985Google Scholar
  23. 23.
    Wolfson, J.: Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds. (Preprint)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • F. E. Burstall
    • 1
  • S. M. Salamon
    • 2
  1. 1.School of MathematicsUniversity of BathBathUK
  2. 2.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations