Mathematische Annalen

, Volume 259, Issue 2, pp 153–199

Primitive ideals and orbital integrals in complex classical groups

  • Dan Barbasch
  • David Vogan
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B] Berge, C.: Principles de combinatoire. Paris: Dunod 1968Google Scholar
  2. [B-J] Borho, W., Jantzen, J.: Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra. Invent. Math.39, 1–53 (1977)Google Scholar
  3. [B-K] Borho, W., Kraft, H.: Über Gelfand-Kirillov Dimension. Math. Ann.220, 1–24 (1976)CrossRefGoogle Scholar
  4. [B-V1] Barbasch, D., Vogan, D.: The local structure of characters. J. Functional Analysis.37, 27–55 (1980)CrossRefGoogle Scholar
  5. [B-V2] Barbasch, D., Vogan, D.: Primitive ideals and orbital integrals in the complex exceptional groups (to appear)Google Scholar
  6. [D1] Duflo, M.: Représentations irréductibles des groupes semisimples complexes. Lecture Notes in Mathematics, Vol. 497, pp. 26–88. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  7. [D2] Duflo, M.: Sur la classification des idéaux primitifs dans l'algebre enveloppante d'une algebre de Lie semi-simple. Ann. Math.105, 107–120 (1977)Google Scholar
  8. [G] Gansner, E.: Matrix correspondences and the enumeration of plane partitions, Ph. D. thesis, MIT 1978Google Scholar
  9. [H] Howe, R.: Wave front sets of representations of Lie groups (preprint) (1978)Google Scholar
  10. [H-C1] Harish-Chandra: Invariant eigendistributions on a semisimple Lie algebra. Publ. Math. IHES27, 5–54 (1965)Google Scholar
  11. [H-C2] —: Invariant eigendistributions on a semisimple Lie group. Trans. Am. Math. Soc.119, 457–508 (1965)Google Scholar
  12. [J1] Joseph, A.: Goldie rank in the enveloping algebra of a semisimple Lie algebra. I. J. Algebra65, 269–283 (1980)Google Scholar
  13. [J2] Joseph, A.: Goldie rank in the enveloping algebra of a semisimple Lie algebra. II. J. Algebra65, 284–316 (1980)Google Scholar
  14. [J3] Joseph, A.: Dixmier's problem for Verma and principal series modules. J. Lond. Math. Soc.20, 193–204 (1979)Google Scholar
  15. [J4] Joseph, A.:W-module structure in the primitive spectrum of the enveloping algebra of a semisimple Lie algebra. Lecture Notes in Mathematics, Vol. 728, pp. 116–135. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  16. [J5] Joseph, A.: A characteristic variety for the primitive spectrum of a semi-simple Lie algebra, preprint; short version in Lecture Notes in Mathematics, Vol. 587, pp. 102–118. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  17. [K1] King, D.: The primitive ideals associated to Harish-Chandra modules and certain harmonic polynomials. Thesis, MIT (1979)Google Scholar
  18. [Ke] Kempken, G.: Manuscript, Bonn, 1980Google Scholar
  19. [L] Lusztig, G.: A class of irreducible representations of a Weyl group. Proc. Nederl. Akad., Series A82, 323–335 (1979)Google Scholar
  20. [L-S] Lusztig, G., Spaltenstein, N.: Induced unipotent classes. J. London Math. Soc.19, 41–52 (1979)Google Scholar
  21. [S1] Spaltenstein, N.: Tagungsberichte Oberwolfach, June, 1979Google Scholar
  22. [S2] Springer, T.: A construction of representations of Weyl groups. Invent. Math.25, 159–198 (1974)CrossRefGoogle Scholar
  23. [V1] Vogan, D.: Ordering of the primitive spectrum of a semi-simple Lie algebra. Math. Ann.248, 195–203 (1980)CrossRefGoogle Scholar
  24. [V2] Vogan, D.: A generalized τ-invariant for the primitive spectrum of a semisimple Lie algebra. Math. Ann.242, 209–224 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Dan Barbasch
    • 1
  • David Vogan
    • 2
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations