Mathematische Annalen

, Volume 281, Issue 3, pp 495–512

On the potential theory of symmetric Markov processes

  • P. J. Fitzsimmons
  • R. K. Getoor
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BD] Beurling A., Deny, J.: Dirichlet spaces. Proc. Nat. Acad. Sci. USA45, 208–215 (1959)Google Scholar
  2. [BG] Blumenthal, R.M., Getoor, R.K.: Markov processes and potential theory. New York: Academic Press 1968Google Scholar
  3. [C] Cartan, H.: Theorie du potential newtonien: énergie, capacité, suites de potentiels Bull. Soc. Math. France73, 74–106 (1945)Google Scholar
  4. [DM] Dellacherie, C., Meyer, P.-A.: Probabilités et potentiel IV, Ch. XII a XVI. Paris: Hermann 1987Google Scholar
  5. [Do] Doob, J.L.: Classical potential theory and its probabilistic counterpart. Berlin Heidelberg New York: Springer 1983Google Scholar
  6. [D1] Dynkin, E.B.: Green's and Dirichlet spaces for a symmetric Markov transition function Lecture Notes of the London Math. Soc. (1982)Google Scholar
  7. [D2] Dynkin, E.B.: Green's and Dirichlet spaces associated with fine Markov processes. J. Funct. Anal.47, 381–418 (1982)Google Scholar
  8. [Fi1] Fitzsimmons, P.J.: On two results in the potential theory of excessive measures. Seminar on Stochastic Processes 1986, 21–29. Boston: Birkhäuser 1987Google Scholar
  9. [Fi2] Fitzsimmons P.J.: Homogeneous random measures and a weak order for the excessive measures of a Markov process. Trans. Am. Math. Soc.303, 431–478 (1987)Google Scholar
  10. [FG] Fitzsimmons, P.J., Getoor, R.K.: Revuz measures and time changes. Math. Z.199 (1988) To appearGoogle Scholar
  11. [FM] Fitzsimmons, P.J., Maisonneuve, B.: Excessive, measures and Markov processes with random birth and death Probab. Th. Rel. Fields72, 319–336 (1986)Google Scholar
  12. [Fu1] Fukushima, M.: Almost polar sets and an ergodic theorem. J. Math. Soc. Japan26, 17–32 (1974)Google Scholar
  13. [Fu2] Fukushima, M.: Potential theory of symmetric Markov processes and its applications. Lecture Notes Mathematics, Vol. 550, 119–133. Berlin Heidelberg New York: Springer (1976)Google Scholar
  14. [Fu3] Fukushima, M.: Dirichlet forms and Markov processes. Amsterdam Oxford New York: North-Holland (1980)Google Scholar
  15. [G] Getoor, R.K.: Markov processes: Ray processes and right processes. Lecture Notes in Mathematics, Vol. 440, Berlin Heidelberg New York: Springer 1974Google Scholar
  16. [GG1] Getoor, R.K., Glover, J.: Markov processes with identical excessive measures. Math. Z.184, 287–300 (1983)Google Scholar
  17. [GG2] Getoor, R.K., Glover, J.: Riesz decompositions in Markov process theory. Trans. Am. Math. Soc.285, 107–132 (1984)Google Scholar
  18. [GG3] Getoor, R.K., Glover, J.: Constructing Markov processes with random times of birth and death. Seminar on Stochastic Processes 1986, 35–69. Boston: Birkhäuser 1987Google Scholar
  19. [GS] Getoor, R.K., Sharpe, M.J.: Naturality, standardness, and weak duality for Markov processes. Z. Wahrscheinlichkeitstheorie Verw. Geb.67, 1–62, (1984)Google Scholar
  20. [GSt1] Getoor, R.K., Steffens, J.: The energy functional, balayage, and capacity. Ann. Inst. Henri Poincaré23, 321–357 (1987)Google Scholar
  21. [GSt2] Getoor, R.K., Steffens, J.: More about capacity and excessive measures. Seminar on Stochastic Processes 1987, 135–157. Boston: Birkhäuser 1988Google Scholar
  22. [L] Landkof, N.S.: Foundations of modern potential theory. Berlin Heidelberg New York: Springer 1972Google Scholar
  23. [M] Meyer, P.-A.: Note sur l'interprétation des mesures d'équilibre, Sem. de Prob. VII. Lecture Notes in Mathematics, Vol. 321, 210–216. Berlin Heidelberg New York: Springer 1973Google Scholar
  24. [Mi] Mitro, J.B.: Dual Markov processes: construction of a useful auxiliary process, Z. Wahrscheinlichkeitstheorie Verw. Geb.47, 139–156 (1979)Google Scholar
  25. [PS] Port, S.C., Stone, C.J.: Brownian motion and classical potential theory. New York: Academic Press 1978Google Scholar
  26. [S] Silverstein, M.L.: Symmetric Markov processes. Lecture Notes in Mathematics, Vol. 426. Berlin Heidelberg New York: Springer 1974Google Scholar
  27. [W] Walsh, J.B.: Markov processes and their functionals in duality. Z. Wahrscheinlichkeitstheorie Verw, Geb.24, 229–246 (1972)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • P. J. Fitzsimmons
    • 1
  • R. K. Getoor
    • 1
  1. 1.University of CaliforniaLa JollaUSA

Personalised recommendations