Mathematische Annalen

, Volume 281, Issue 3, pp 451–458 | Cite as

Weakly compact operators on Jordan triples

  • Cho-Ho chu
  • Bruno Iochum


Compact Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akemann, C.A., Dodds, P.G., Gamlen, J.L.B.: Weak compactness in the dual space of aC *-algebra. J. Funct. Anal.10, 446–450 (1972)Google Scholar
  2. 2.
    Alvermann, K., Janssen, G.: Real and complex noncommutative Jordan Banach algebras. Math. Z.185, 105–113 (1984)Google Scholar
  3. 3.
    Barton, T., Friedman, Y.: Grothendieck's inequality forJB *-triples and applications. J. London Math. Soc.36, 513–523 (1987)Google Scholar
  4. 4.
    Beauzamy, B.: Opérateurs uniformément convexifiants. Stud. Math.57, 103–139 (1976)Google Scholar
  5. 5.
    Chu, C.-H., Iochum, B.: On the Radon-Nikodým property in Jordan triples. Proc. Am. Math. Soc.99, 462–464 (1987)Google Scholar
  6. 6.
    Davis, W.J., Figiel, T., Johnson, W.B., Pelczynski, A.: Factoring weakly compact operators. J. Funct. Anal.17, 311–327 (1974)Google Scholar
  7. 7.
    Dineen, S.: complete holomorphic vector fields on the second dual of a Banach space. Math. Scand.59, 131–142 (1986)Google Scholar
  8. 8.
    Enflo, P.: Banach spaces which can be given an equivalent uniformly convex norm. Isr. J. Math.13, 281–288 (1973)Google Scholar
  9. 9.
    Friedman, Y., Russo, B.: The Gelfand-Naimark theorem forJB *-triples. Duke Math. J.53, 139–148 (1986)Google Scholar
  10. 10.
    Hanche-Olsen, H., Stormer, E.: Jordan Operator algebras. London: Pitman 1984Google Scholar
  11. 11.
    Harris, C.: A generalization ofC *-algebras. Proc. Lond. Math. Soc.42, 331–361 (1981)Google Scholar
  12. 12.
    Horn, G.: Klassifikation derJBW *-tripel von typ I. Dissertation, Tübingen (1984)Google Scholar
  13. 13.
    Horn, G., Neher, E.: Classification of continuousJBW *-triples. Trans. Am. Math. Soc. (in press)Google Scholar
  14. 14.
    Iochum, B.: Cônes autopolaires et algébres de Jordan. Lecture Notes in Math. 1049. Berlin Heidelberg New York: Springer 1984Google Scholar
  15. 15.
    Janssen, G.: Factor representations of type I for noncommutativeJB andJB *-algebras. Preprint (1983)Google Scholar
  16. 16.
    Jarchow, H.: Weakly compact operators onC(K) and onC *-algebras. Lecture Notes, Ecole d'Automne CIMPA, Nice (1986)Google Scholar
  17. 17.
    Jarchow, H.: On weakly compact operators onC *-algebras. Math. Ann.273, 341–343 (1986)Google Scholar
  18. 18.
    Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z.183, 503–529 (1983)Google Scholar
  19. 19.
    Pedersen, G.K.:C *-algebras and their automorphism groups. London: Academic Press 1979Google Scholar
  20. 20.
    Pietsch, A.: Operator ideals. Amsterdam: North-Holland 1980Google Scholar
  21. 21.
    Pisier, G.:K-convexity, Proc. Res. Workshop on Banach space theory. University of Iowa Press (1982)Google Scholar
  22. 22.
    Rosenthal, H.P.: On subspaces ofL P. Ann. Math.97, 344–373 (1973)Google Scholar
  23. 23.
    Takesaki, M.: Theory of operator algebras I. Berlin Heidelberg New York: Springer 1979Google Scholar
  24. 24.
    Upmeier, H.: Symmetric Banach manifolds and JordanC *-algebras. Amsterdam: North-Holland 1985Google Scholar
  25. 25.
    Wright, J.D.M.: JordanC *-algebras. Mich. Math. J.24, 291–302 (1977)Google Scholar
  26. 26.
    Spain, P.G.: A generalization of a theorem of Grothendieck. Quant. J. Math. Oxford27, 475–479 (1976)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Cho-Ho chu
    • 1
  • Bruno Iochum
    • 2
  1. 1.Goldsmiths' CollegeLondonUK
  2. 2.C.N.R.S.Université de Provence and Centre de Physique ThéoriqueMarseille Cedex 9France

Personalised recommendations