Mathematische Annalen

, Volume 263, Issue 3, pp 313–321 | Cite as

The bifurcation set and logarithmic vector fields

  • Hiroaki Terao
Article

Keywords

Vector Field Logarithmic Vector Logarithmic Vector Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnol'd, V.I.: Indices of singular points of 1-forms on a manifold with boundary, convolution of invariants of reflection groups, and singular projections of smooth surfaces. Usp. Mat. Nauk34, 3–38 (1979); Russian Math. Surveys34, 1–42 (1979)Google Scholar
  2. 2.
    Cartier, P.: Les arrangements d'hyperplans: un chapitre de géometrie combinatoire. Séminaire Bourbaki 33e année, 1980/1981, no 561. Lecture Notes in Mathematics, No. 901. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  3. 3.
    Looijenga, E.: The complement of the bifurcation variety of a simple singularity. Invent. Math.32, 105–116 (1974)Google Scholar
  4. 4.
    Lyashko, O.V.: The geometry of bifurcation diagrams. Usp. Mat. Nauk34, 205–206 (1979); Russian Math. Surveys34, 209–210 (1979)Google Scholar
  5. 5.
    Saito, K.: On the uniformization of complements of discriminant loci. Symp. in Pure Math., Williams College, 1975, Several Complex variables. Providence: AMS 1977Google Scholar
  6. 6.
    Saito, K.: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect, IA27, 265–291 (1980)Google Scholar
  7. 7.
    Saito, K.: Primitive forms for an unfolding of a function with an isolated critical point. J. Fac. Sci. Univ. Tokyo Sect. IA28, 775–792 (1982)Google Scholar
  8. 8.
    Teissier, B.: The hunting of invariants in the geometry of discriminants. Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 565–678. Alphen aan den Rijn: Sijthoff and Noordhoff 1977Google Scholar
  9. 9.
    Terao, H.: Arrangements of hyperplanes and their freeness. I. J. Fac. Sci. Univ. Tokyo Sect. IA27, 293–312 (1980)Google Scholar
  10. 10.
    Terao, H.: Generalized exponents of a free arrangement of hyperplanes and Shephard-Todd-Brieskorn formula. Invent. Math.63, 159–179 (1981)Google Scholar
  11. 11.
    Terao, H.: Discriminant of a holomorphic map and logarithmic vector fields (to appear in J. Fac. Sci. Univ. Tokyo Sect. IA)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Hiroaki Terao
    • 1
  1. 1.Department of MathematicsUniversity of WisconsinMadisonUSA

Personalised recommendations