Advertisement

Mathematische Annalen

, Volume 263, Issue 1, pp 87–144 | Cite as

A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2

  • Alex J. Feingold
  • Igor B. Frenkel
Article

Keywords

Modular Form Siegel Modular Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrianov, A.N.: Euler products corresponding to Siegel modular forms of genus 2. Usp. Mat. Nauk29, 43–110 (1974) [English transl. Russian Math. Surveys29, 45–116 (1974)]Google Scholar
  2. 2.
    Andrianov, A.N.: Modular descent and the Saito-Kurokawa conjecture. Invent. Math.53, 267–280 (1979)CrossRefGoogle Scholar
  3. 3.
    Borevich, Z.I., Shafarevich, I.R.: Number theory, pure and applied mathematics, Vol. 20. New York: Academic Press 1966Google Scholar
  4. 4.
    Feingold, A.J.: A hyperbolic GCM Lie algebra and the Fibonacci numbers. Proc. Am. Math. Soc.80, 379–385 (1980)Google Scholar
  5. 5.
    Feingold, A.J.: Tensor products of certain modules for the generalized Cartan matrix Lie algebraA 1(1). Comm. Algebra9, 1323–1341 (1981)Google Scholar
  6. 6.
    Feingold, A.J., Lepowsky, J.: The Weyl-Kac character formula and power series identities. Adv. Math.29, 271–309 (1978)CrossRefGoogle Scholar
  7. 7.
    Frenkel, I.: Spinor representations of affine Lie algebras. Proc. Nat. Acad. Sci.77, 6303–6306 (1980)Google Scholar
  8. 8.
    Frenkel, I.: Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory. J. Functional Analysis44 259–327 (1981)CrossRefGoogle Scholar
  9. 9.
    Frenkel, I.: Representations of affine Lie algebras, Hecke modular forms, and Korteweg-de Vries type equations. Proceedings of the 1981 Rutgers Conference on Lie Algebras and related topics. Lecture Notes in Mathematics, Vol. 933, pp. 71–110. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  10. 10.
    Frenkel, I., Kac, V.G.: Basic representations of affine Lie algebras and dual resonance models. Invent. Math.62, 23–66 (1980)CrossRefGoogle Scholar
  11. 11.
    Gabber, O., Kac, V.G.: On defining relations of certain infinite-dimensional Lie algebras. Bull. Am. Math. Soc.5, 185–189 (1981)Google Scholar
  12. 12.
    Garland, H., Lepowsky, J.: Lie algebra homology and the Macdonald-Kac formulas. Invent. Math.34, 37–76 (1976)CrossRefGoogle Scholar
  13. 13.
    Igusa, J.: On Siegel modular forms of genus two. Am. J. Math.84, 175–200 (1962)Google Scholar
  14. 14.
    Kac, V.G.: Simple irreducible graded Lie algebras of finite growth. Izv. Akad. Nauk. SSSR32, 1323–1376 (1968) (in Russian) [English transl.: Math. USSR-Izv.2, 1271–1311 (1968)Google Scholar
  15. 15.
    Kac, V.G.: Infinite-dimensional Lie algebras and Dedekind's η-function. Funkt. Anal. Priloz.8, 77–78 (1974) (in Russian). [English transl.: Functional Anal. Appl.8, 68–70 (1974)]Google Scholar
  16. 16.
    Kac, V.G.: Infinite-dimensional algebras, Dedekind's η-function, classical Mobius function, and the very strange formula. Adv. Math.30, 85–136 (1978)CrossRefGoogle Scholar
  17. 17.
    Kac, V.G., Kazhdan, D.A., Lepowsky, J., Wilson, R.L.: Realization of the basic representations of the Euclidean Lie algebras. Adv. Math.42 83–112 (1981)CrossRefGoogle Scholar
  18. 18.
    Kac, V.G., Peterson, D.H.: Affine Lie algebras and Hecke modular forms. Bull. Math. Soc.3, 1057–1061 (1980)Google Scholar
  19. 19.
    Kantor, I.L.: Infinite dimensional simple graded Lie algebras. Dokl. Akad. Nauk SSSR179, 534–537 (1968) (in Russian) [English transl. Sov. Math. Dokl.9, 409–412 (1968)]Google Scholar
  20. 20.
    Kohnen, W.: Modular forms of half-integral weight on 143-1. Math. Ann.248, 249–266 (1980)CrossRefGoogle Scholar
  21. 21.
    Kojima, H.: An arithmetic of Hermitian modular forms of degree two. Invent. Math.69, 217–227 (1982)CrossRefGoogle Scholar
  22. 22.
    Kurokawa, N.: Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two, Invent. Math.49, 149–165 (1978)CrossRefGoogle Scholar
  23. 23.
    Lepowsky, J., Milne, S.: Lie algebraic approaches to classical partition identities. Adv. Math.29, 15–59 (1978)CrossRefGoogle Scholar
  24. 24.
    Lepowsky, J., Moody, R.V.: Hyperbolic Lie algebras and quasi-regular cusps on Hilbert modular surfaces. Math. Ann.245, 63–88 (1979)CrossRefGoogle Scholar
  25. 25.
    Lepowsky, J., Wilson, R.L.: Construction of the affine Lie algebraA 1(1). Commun. Math. Phys.62, 43–53 (1978)Google Scholar
  26. 26.
    Looijenga, E.: Root systems and elliptic curves. Invent. Math.38, 17–32 (1976)Google Scholar
  27. 27.
    Maaß, H.: Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. Mat. Fys. Medd. Dan. Vid. Selsk.34, 1–25 (1964)Google Scholar
  28. 28.
    Maaß, H.: Über die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. Mat. Fys. Medd. Dan. Vid. Selsk.38, 1–13 (1972)Google Scholar
  29. 29.
    Maaß, H.: Lineare Relationen für die Fourierkoeffizienten einiger Modulformen zweiten Grades. Math. Ann.232, 163–175 (1978)Google Scholar
  30. 30.
    Maaß, H.: Über eine Spezialschar von Modulformen zweiten Grades. Invent. Math.52, 95–104 (1979)Google Scholar
  31. 31.
    Maaß, H.: Über eine Spezialschar von Modulformen zweiten Grades. II. Invent. Math.53, 249–253 (1979)Google Scholar
  32. 32.
    Maaß, H.: Über eine Spezialschar von Modulformen zweiten Grades. III. Invent. Math.53, 255–265 (1979)Google Scholar
  33. 33.
    Macdonald, I.G.: Affine root systems and Dedekind's η-function. Invent. Math.15, 91–143 (1972)Google Scholar
  34. 34.
    Magnus, W.: Non-Euclidean Tesselations and their Groups. Pure Appl. Math. Vol. 61. New York, London: Academic Press 1974Google Scholar
  35. 35.
    Moody, R.V.: Root systems of hyperbolic type. Adv. Math.33, 144–160 (1979)Google Scholar
  36. 36.
    Moody, R.V., Berman, S.: Lie algebra multiplicities. Proc. Am. Math. Soc.76, 223–228 (1979)Google Scholar
  37. 37.
    Peterson, H.: Zur analytischen Theorie der Grenzkreisgruppen. II. Math. Ann.115, 175–204 (1938)Google Scholar
  38. 38.
    Piatetski-Shapiro, I.: On the Saito-Kurokawa lifting (preprint) (1981)Google Scholar
  39. 39.
    Resnikoff, H.L., Saldaña, R.L.: Some properties of Fourier coefficients of Eisenstein series of degree two. J. Reine Angew. Math.265, 90–109 (1974)Google Scholar
  40. 40.
    Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan11 (1971)Google Scholar
  41. 41.
    Whittaker, E.T., Watson, G.N.: A course of modern analysis. New York: MacMillan 1948Google Scholar
  42. 42.
    Yoshida, M.: Discrete reflection groups in a parabolic subgroups of Sp(2,ℝ) and symmetrizable hyperbolic generalized Cartan matrices of rank 3 (preprint)Google Scholar
  43. 43.
    Zagier, D.: Sur la conjecture de Saito-Kurokawa (d'après H. Maß). Seminaire Delange-Pisot-Poitou (preprint) (1980)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Alex J. Feingold
    • 1
  • Igor B. Frenkel
    • 2
  1. 1.The State University of New York at BinghamtonBinghamtonUSA
  2. 2.Yale UniversityNew HavenUSA

Personalised recommendations