Mathematische Annalen

, Volume 263, Issue 4, pp 399–418 | Cite as

A formula for interpolation and division in ℂn

  • Bo Berndtsson
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amar, E.: Extension de fonctions holomorphe et courants. Preprint Orsay 1980Google Scholar
  2. 2.
    Berenstein, C.A., Taylor, B.A.: Interpolation problems in ℂn with applications to harmonic analysis. J. Analyse Math.38 (1980)Google Scholar
  3. 3.
    Berenstein, C.A., Taylor, B.A.: On the geometry of interpolating varieties. Sem. Lelong-Skoda 1980–1981. Lecture Notes in Mathematics 919. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  4. 4.
    Berndtsson, B., Andersson, M.: Henkin-Ramirez formulas with weight factors. Ann. Inst. Fourier32, 3 (1982)Google Scholar
  5. 5.
    Fornaess, J.E.: Embedding strictly pseudoconvex domains in convex domains. Am. J. Math.98 (1976)Google Scholar
  6. 6.
    Henkin, G.M.: Integral representation of a function in a strictly pseudoconvex domain and applications to the\(\bar \partial \)-problem (Russian) Mat. Sb. (1982)Google Scholar
  7. 7.
    Henkin, G.M.: Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains (Russian). Izv. Akad. Nauk. SSSR, Ser. Mat.36 (1972)Google Scholar
  8. 8.
    Henkin, G.M., Leiterer, J.: Global integral formulas for solving the\(\bar \partial \)-equation on Stein manifolds. Ann. Pol. Math. (to appear)Google Scholar
  9. 9.
    Hörmander, L.: An introduction to complex analysis in several variables. Amsterdam, Van Nostrand 1966Google Scholar
  10. 10.
    Hörmander, L.: Generators for some rings of analytic functions. Bull. Am. Math. Soc.73 (1967)Google Scholar
  11. 11.
    Lelong, P.: Fonctions plurisousharmoniques et formes différentielles positives. London: Gordon and Breach 1968Google Scholar
  12. 12.
    Nishimura, Y.: Problème d'extension dans la théorie des fonctions entiére d'ordre fini. J. Math. Kyoto Univ.20 (1980)Google Scholar
  13. 13.
    Palm, A.: Integral representation formulas on strictly pseudoconvex domains in Sein manifolds. Duke Math. J.43 (1976)Google Scholar
  14. 14.
    Ramirez de Arellao, E.: Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis. Math. Ann.184, 172 (1969)Google Scholar
  15. 15.
    Skoda, H.: Application des techniquesL 2 a la theorie des ideaux d'une algébre de fonctions holomorphes avec poids. Ann. Sci. Ecole Norm. Sup.5 (1972)Google Scholar
  16. 16.
    Stout, E.L.: An integral formula for holomorphic functions on strictly pseudoconvex hypersurfaces. Duke Math. J.42 (1975)Google Scholar
  17. 17.
    Yoshioka, T.: Cohomologie a estimationL 2 et extension des fonctions holomorphes avec controle de la croissance. Proc. Jpn. Acad.57 (1981)Google Scholar
  18. 18.
    Cornalba, M., Shiffman, B.: A counterexample to the “Transcendental Bezov-problem”. Ann. Math.96 (1972)Google Scholar
  19. 19.
    Demailly, J.P.: Scindage holomorphe d'un morphisme de fibrés vectoriels semi-positifs avec estimationL 2. Sem. Lelong-Skoda 1980–81. Lecture Notes in Mathematics 919. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  20. 20.
    Hortmann, M.: Globale holomorphe Kerne zur Lösung der Cauchy-Riemannschen differentialgleichungen. Annals Math. Studies 100 Princeton: Princeton University Press 1981Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Bo Berndtsson
    • 1
    • 2
  1. 1.Departmento de MatematicasCIEA del IPNMexico 14 DF
  2. 2.Department of MathematicsUniversity of Gothenburg and CTHGöteborgSweden

Personalised recommendations