Mathematische Annalen

, Volume 282, Issue 1, pp 1–21 | Cite as

Quaternionic reduction and quaternionic orbifolds

  • K. Galicki
  • H. B. LawsonJr.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    Alekseevskii, D.V.: Classification of quaternionic spaces with transitive solvable group of motions. Math. USSR-Izv.9, 297 (1975)Google Scholar
  2. [B]
    Berger, M.: Sur les groupes d'holonomie homogène des variétés à connexion affines et des variétés riemanniennes. Bull. Soc. Math. France83, 279 (1955)Google Scholar
  3. [BL]
    Bourguignon, J.P., Lawson, H.B. Jr.: Stability and isolation phenomena for Yang-Mills fields. Commun. Math. Phys.79, 169 (1980)Google Scholar
  4. [G1]
    Galicki, K.: A generalization of the momentum mapping construction for quaternionic Kähler manifolds. Commun. Math. Phys.108, 117 (1987)Google Scholar
  5. [G2]
    Galicki, K.: New metrics withSp n Sp 1 holonomy. Nucl. Phys. B289, 573 (1987)Google Scholar
  6. [H1]
    Hitchin, N.J.: Kählerian twistor spaces. Proc. London Math. Soc. (3)43, 133 (1981)Google Scholar
  7. [H2]
    Hitchin, N.J.: Not publishedGoogle Scholar
  8. [I]
    Ishihara, S.: Quaternion Kählerian manifolds. J. Diff. Geom.9, 483 (1974)Google Scholar
  9. [MW]
    Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys.5, 121 (1974)Google Scholar
  10. [ON]
    O'Neill, B.: The fundamental equations of a submersion. Michigan Math. J.13, 459 (1966)Google Scholar
  11. [P]
    Pedersen, H.: Einstein metrics, spinning top motions and monopoles. Math. Ann.274, 35 (1986)Google Scholar
  12. [S]
    Salamon, S.: Quaternionic Kähler manifolds. Invent. Math.67, 143 (1982)Google Scholar
  13. [W]
    Wolf, J.A.: Complex homogeneous contact manifolds and quaternionic symmetric spaces. J. Math. Mech.14, 1033 (1965)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • K. Galicki
    • 1
  • H. B. LawsonJr.
    • 2
  1. 1.Institute for Theoretical PhysicsState University of New York at Stony BrookStony BrookUSA
  2. 2.Department of MathematicsState University of New York at Stony BrookStony BrookUSA

Personalised recommendations