Mathematische Annalen

, Volume 282, Issue 2, pp 299–313 | Cite as

On E. Borel's theorem

  • Hans-Joachim Petzsche


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borel, E.: Sur quelques points de la théorie des fonctions. Ann. Sci. Éc. Norm. Super, IV. Set.12, 9–55 (1985)Google Scholar
  2. 2.
    Bruna, J.: An extension theorem of Whitney type for non-quasianalytic classes of functions I. London Math. Soc.22, 495–505 (1980)Google Scholar
  3. 3.
    Carleson, L.: On universal moment problems. Math. Scand.9, 197–206 (1961)Google Scholar
  4. 4.
    Dzanasija, G.A.: Carleman's problem for functions of the Gevrey class. Sov. Math., Dokl.3, 969–972 (1962) [translated from Dokl. Akad. Nauk. SSSR145, 259–262 (1962)]Google Scholar
  5. 5.
    Ehrenpreis, L.: Fourier analysis in several complex variables. New York: Wiley 1970Google Scholar
  6. 6.
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Providence, R.I.: Am. Math. Soc. 1973Google Scholar
  7. 7.
    Hörmander, L.: The analysis of linear partial differential operators. I. Berlin Heidelberg New York: Springer 1983Google Scholar
  8. 8.
    Komatsu, H.: Ultradistributions. II. The Kernel theorem and ultradistributions with support in a submanifold. J. Fac. Sci., Univ. Tokyo, Sect. I A24, 607–628 (1977)Google Scholar
  9. 9.
    Langenbruch, M.: Ultradifferentiable functions on compact intervals. PreprintGoogle Scholar
  10. 10.
    Langenbruch, M.: Bases in spaces of ultradifferentiable functions with compact support. PreprintGoogle Scholar
  11. 11.
    Meise, R., Taylor, B.A.: Opérateurs linéaires continus d'extension pour les fonctions ultradifferentiables sur des intervalls compacts. C.R. Acad. Sci. Paris302, 219–222 (1986)Google Scholar
  12. 12.
    Meise, R., Taylor, B.A.: Linear extension operators for ultradifferentiable functions on compact sets. PreprintGoogle Scholar
  13. 13.
    Meise, R., Taylor, B.A.: Whitney's extension theorem for ultradifferentiable functions of Beurling type. PreprintGoogle Scholar
  14. 14.
    Mityagin, B.S.: An indefinitely differentiable function with the values of its derivatives given at a point. Sov. Math., Dokl.2, 594–597 (1961) [translated from Dokl. Akad. Nauk SSSR138, 289–292 (1961)]Google Scholar
  15. 15.
    Mityagin, B.S.: Approximate dimension and bases in nuclear spaces. Russ. Math. Surv.16, 59–127 (1961) [translated from Usp. Math. Nauk16, 63–132 (1961)]Google Scholar
  16. 16.
    Petzsche, H.-J.: Some results of Mittag-Leffler-type for vector valued functions and spaces of class 313-1. In: Bierstedt, K.-D., Fuchssteiner, B. (eds.). Functional analysis: surveys and recent results. II. Amsterdam. North-Holland 1980Google Scholar
  17. 17.
    Petzsche, H.-J., Vogt, D.: Almost analytic extension of ultradifferentiable functions and the boundary values of holomorphic functions. Math. Ann.267, 17–35 (1984)Google Scholar
  18. 18.
    Vogt, D.: Subspaces and quotient spaces of (s). In: Biertedt, K.-D., Fuchssteiner, B. (eds.). Functional analysis: Surveys and recent results. I. Amsterdam: North-Holland 1977Google Scholar
  19. 19.
    Wahde, G.: Interpolation in non-quasi-analytic classes of infinitely differentiable functions. Math. Scand.20, 19–31 (1967)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Hans-Joachim Petzsche
    • 1
  1. 1.Abteilung MathematikUniversität DortmundDortmund 50Federal Republic of Germany

Personalised recommendations