Mathematische Annalen

, Volume 259, Issue 1, pp 131–144

Axial isometries of manifolds of non-positive curvature

  • Werner Ballmann
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ballmann, W.: Einige neue Resultate über Mannigfaltigkeiten nicht positiver Krümmung. Dissertation, Bonn, 1977Google Scholar
  2. 2.
    Bishop, R., O'Neill, B.: Manifolds of negative curvature. Trans. Am. Math. Soc.145, 1–49 (1969)Google Scholar
  3. 3.
    Cheeger, J., Ebin, D.G.: Comparison theorems in Riemannian geometry. Amsterdam, Oxford, New York: North-Holland/American Elsevier 1975Google Scholar
  4. 4.
    Chen, S.S., Eberlein, P.: Isometry groups of simply connected manifolds of nonpositive curvature. Ill. J. Math.24, 73–103 (1980)Google Scholar
  5. 5.
    Eberlein, P.: Geodesic flow in certain manifolds without conjugate points. Trans. Am. Math. Soc167, 151–170 (1972)Google Scholar
  6. 6.
    Eberlein, P.: Geodesic flows on negatively curved manifolds. II. Trans. Am. Math. Soc.178, 57–82 (1973)Google Scholar
  7. 7.
    Eberlein, P.: Some properties of the fundamental group of a Fuchsian maniford. Invent. Math.19, 5–13 (1973)Google Scholar
  8. 8.
    Eberlein, P.: Surfaces of nonpositive curvature. Mem. Am. Math. Soc.218, Providence, R.l.: Am. Math. Soc. 1979Google Scholar
  9. 9.
    Eberlein, P.: Lattices in spaces of nonpositive curvature. Preprint, Chapel Hill, 1979Google Scholar
  10. 10.
    Eberlein, P., O'Neill, B.: Visibility manifolds. Pacific J. Math.46, 45–109 (1973)Google Scholar
  11. 11.
    Gromov, M.: Manifolds of negative curvature. J. Differential Geometry13, 223–230 (1978)Google Scholar
  12. 12.
    Hedlund, G.: The dynamics of geodesic flows.Bull. Am. Math. Soc.45, 241–260 (1939)Google Scholar
  13. 13.
    Milnor, J.: A note on curvature and fundamental group. J. Differential Geometry2, 1–7 (1968)Google Scholar
  14. 14.
    Tits, J.: Free subgroups of linear groups. J. Algebra20, 250–270 (1972)Google Scholar
  15. 15.
    Yau, S.T.: Non-existence of continuous convex functions on certain Riemannian manifolds. Math. Ann.207, 269–270 (1974)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Werner Ballmann
    • 1
  1. 1.Mathematisches Institut der Universität BonnBonn 1Federal Republic of Germany

Personalised recommendations