Mathematische Annalen

, Volume 280, Issue 3, pp 483–500 | Cite as

The homology of cyclic and irregular dihedral coverings branched over homology spheres

  • Valerio Chumillas
  • José María Montesinos


Homology Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bu]
    Burde, G.: On branched coverings ofS 3. Can. J. Math.23, 84–89 (1971)Google Scholar
  2. [Ch]
    Chumillas, V.: Estudio de las cubiertas dihédricas deS 3 ramificadas sobre enlaces, Ph.D. Thesis, Madrid, 1984Google Scholar
  3. [CR]
    Costa, A., Ruiz, J.M.: On the homology of metacyclic coverings. Math. Ann.275, 163–168 (1986)Google Scholar
  4. [F1]
    Fox, R.H.: Covering spaces with singularities. Lefschetz Symposium, Princeton Math. Series 12. 243–257, Princeton: Princeton Univ. Press 1957Google Scholar
  5. [F2]
    Fox, R.H.: A note on branched cyclic coverings of spheres. Rev. Mat. Hisp. Am. IV Ser.32, 158–166 (1972)Google Scholar
  6. [Hi]
    Hilden, H.M.: Every closed orientable 3-manifold is a 3-fold branched covering space ofS 3, Bull. Am. Math. Soc.80, 1243–1244 (1974)Google Scholar
  7. [H]
    Hirsch, U.: Über offene Abbildungen auf die 3-Sphäre. Math. Z.140, 203–230 (1974)Google Scholar
  8. [Ka]
    Kaplansky, I.: Modules over Dedekind rings and valuation rings. Trans. Am. Math. Soc.72, 327–340 (1952)Google Scholar
  9. [Ma]
    Marcus, D.A.: Number fields. Berlin Heidelberg New York: Springer 1977Google Scholar
  10. [Mi]
    Milnor, J.: Introduction to algebraicK-theory. Ann. Math. Stud.72, (1971)Google Scholar
  11. [Mo1]
    Montesinos, J.M.: Representaciones de enlaces en relación con recubridores dobles ramificados. Collect. Mat.25, 145–157 (1974)Google Scholar
  12. [Mo2]
    Monstesinos, J.M.: A representation of closed, orientable 3-manifolds as 3-fold branched coverings ofS 3. Bull. Am. Math. Soc.80, 845–846 (1974)Google Scholar
  13. [Mo3]
    Montesinos, J.M.: Sobre la conjetura de Poincaré y los recubridores ramificados sobre un nudo. Ph.D. Thesis, Madrid (1971)Google Scholar
  14. [Ro]
    Rolfsen, D.: Knots and links. Berkeley: Publish or Perish 1976Google Scholar
  15. [St]
    Steinitz, E.: Rechteckige Systeme und Moduln in algebraischen Zahlkörpern. Math. Ann.71, 328–354 (1912)Google Scholar
  16. [VW]
    Val, P. del, Weber, C.: Plans' theorem for links (in prepagation)Google Scholar
  17. [Wa]
    Washington, L.C.: Introduction to cyclotomic fields. Graduated Texts in Mathematics. Vol. 83. Berlin Heidelberg New York: Springer 1982Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Valerio Chumillas
    • 1
  • José María Montesinos
    • 1
  1. 1.Facultad de MatemáticasUniversidad ComplutenseMadridSpain

Personalised recommendations