Mathematische Annalen

, Volume 270, Issue 2, pp 201–222 | Cite as

Periods of Enriques surfaces

  • Yukihiko Namikawa


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barth, W., Peters, Ch.: Automorphisms of Enriques surfaces. Invent. Math.73, 383–411 (1983)Google Scholar
  2. 2.
    Barth, W., Peters, Ch., Ven, A. van de: Compact complex surfaces. Berlin, Heidelberg, New York, Tokyo: Springer 1984Google Scholar
  3. 3.
    Burns, D., Rapoport, M.: On the Torelli problem for KählerianK3-surfaces. Ann. Sci. E.N.S.8, 235–274 (1975)Google Scholar
  4. 4a.
    Dolgachev, I.: On automorphisms of Enriques surfaces. Invent. Math.76, 163–177 (1984)Google Scholar
  5. 4b.
    Fano, G.: Superficie algebriche di genere zero e bigenere uno, e loro casi particolari. Rend. Circ. Mat. Palermo29, 98–118 (1910)Google Scholar
  6. 5.
    Horikawa, E.: On the periods of Enriques surfaces, I and II. Math. Ann.234, 73–88 (1978);235, 217–246 (1978)Google Scholar
  7. 6.
    James, D.G.: Representations by integral quadratic forms. J. Number Theory4, 321–329 (1972)Google Scholar
  8. 7.
    Looijenga, E., Peters, Ch.: Torelli theorems for KählerK3 surfaces. Compositio Math.42, 145–186 (1981)Google Scholar
  9. 8.
    Mukai, S., Namikawa, Y.: On the automorphisms of Enriques surfaces which act trivially on the cohomology. Invent. Math.77, 383–397 (1984)Google Scholar
  10. 9.
    Namikawa, Y.: Surjectivity of period map forK3 surfaces. In: Classification of algebraic and analytic manifolds. Progress in Mathematics, Vol. 39, pp. 379–397. Basel, Boston, Stuttgart: Birkhäuser 1983Google Scholar
  11. 10.
    Nikulin, V.V.: On Kummer surfaces. Izv. Akad. Nauk SSSR86, 751–798 (1975); Engl. transl.: Math. USSR Izv.39, 278–293 (1975)Google Scholar
  12. 11.
    Nikulin, V.V.: Finite automorphism groups of KählerK3 surfaces. Trudy Moskov Math. Obšč.38, 75–137 (1979) [Engl. transl: Trans. Moscow Math. Soc.38, 71–135 (1980)]Google Scholar
  13. 12.
    Nikulin, V.V.: Integral symmetric bilinear forms and some of their applications. Izv. Akad. Nauk SSSR43, 111–177 (1979) [Engl. transl.: Math. USSR Izv.14, 103–167 (1980)]Google Scholar
  14. 13.
    Pjatečkiî-Šapiro, I.Z., Šafarevič, I.R.: A Torelli theorem for algebraic surfaces of typeK3. Izv. Akad. Nauk SSSR35, 530–572 (1971) [Engl. transl. Math. USSR Izv.5, 547–588 (1971)]Google Scholar
  15. 14.
    Siù, Y.-T.: EveryK3 surface is Kähler. Invent. Math.73, 139–150 (1983)Google Scholar
  16. 15.
    Todorov, A.N.: Applications of the Kähler-Einstein-Calabi-Yau metric to moduli ofK3 surfaces. Invent. Math.61, 251–266 (1980)Google Scholar
  17. 16.
    Vinberg, E.B.: Some arithmetic discrete groups in Lobačevskiî spaces. In: Discrete subgroups of Lie groups and applications to moduli, pp. 323–348. Oxford: Oxford University Press. Bombay 1975Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Yukihiko Namikawa
    • 1
  1. 1.Department of MathematicsNagoya UniversityNagoyaJapan

Personalised recommendations