Mathematische Annalen

, Volume 268, Issue 2, pp 207–221

On the density of ratios of Chern numbers of algebraic surfaces

  • Andrew John Sommese
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hartshorne, R.: Ample subvarieties of algebraic varieties Lecture Notes in Mathematics, Vol. 156. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  2. 2.
    Hartshorne, R.: Algebraic geometry. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  3. 3.
    Hirzebruch, F.: Arrangements of lines and algebraic surfaces. Arithmetic and geometry, Vol. II. Progress in Math. Vol. 36, pp. 113–140. Boston, Basel, Stuttgart: Birkhäuser 1983Google Scholar
  4. 4.
    Iitaka, S.: Geometry on complements of lines inP 2. Tokyo J. Math.1, 11–19 (1978)Google Scholar
  5. 5.
    Ishida, M.-N.: The irregularities of Hirzebruch's examples of surfaces of general type withc 12=3 c2. Math. Ann.262, 407–420 (1983)Google Scholar
  6. 6.
    Miyaoka, Y.: On the Chern numbers of surfaces of general type. Invent. Math.42, 225–237 (1977)Google Scholar
  7. 7.
    Persson, U.: Chern invariants of surfaces of general type. Composito Math.43, 3–58 (1981)Google Scholar
  8. 8.
    Sakai, F.: Semi-stable curves on algebraic surfaces and logarithmic pluri-canonical maps. Math. Ann.254, 89–120 (1980)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Andrew John Sommese
    • 1
  1. 1.Department of MathematicsUniversity of Notre DameNotre DameUSA

Personalised recommendations