Mathematische Annalen

, Volume 280, Issue 2, pp 207–245

Continuous étale cohomology

  • Uwe Jannsen
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bousfield, A.K., Kan, D.M.: Homotopy limits, completions and localizations. Lecture Notes in Mathematics 304. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  2. 2.
    Bredon, G.: Sheaf theory. New York: McGraw-Hill 1967Google Scholar
  3. 3.
    Dwyer, W.G., Friedlander, E.M.: Algebraic and étaleK-theory. Trans. Am. Math. Soc.292, 247–280 (1985)Google Scholar
  4. 4.
    Eilenberg, S., MacLane, S.: Cohomology theory of abstract groups. I. Ann. Math.48, 51–78 (1947)Google Scholar
  5. 5.
    Gray, B.I.: Spaces of the samen-type, for alln. Topology5, 241–243 (1966)Google Scholar
  6. 6.
    Grothendieck, A.: Sur quelques points d'algèbre homologique. Tôhoku Math. J.9, 119–221 (1957)Google Scholar
  7. 7.
    Grothendieck, A.: La théorie des classes de Chern: Bull Soc. Math. Fr.86, 137–154 (1958)Google Scholar
  8. 8.
    Harrison, D.K.: Infinite abelian groups and homological methods. Ann. Math.69, 366–391 (1956)Google Scholar
  9. 9.
    Milne, J.S.: Étale cohomology, Princeton Mathematical Series 33, Princeton, 1980Google Scholar
  10. 10.
    Roos, J.-E.: Sur les foncteurs dérivés de\(\underleftarrow {\lim }\). Applications. C.R. Acad. Sci. Ser. I252, 3702–3704 (1961)Google Scholar
  11. 11.
    Roos, J.-E.: Sur les foncteurs dérivés des produits infinis dans les catégories de Grothendieck. Exemples et contre-exemples. C.R. Acad. Sci. Ser. I263, 895–898 (1966)Google Scholar
  12. 12.
    Serre, J.-P.: Cohomologie Galoisienne. Lecture Notes in Mathematics 5. Berlin, Göttingen, Heidelberg, New York: Springer 1964Google Scholar
  13. 13.
    Soulé, Ch.: Operations on étaleK-theory. Applications. Lecture Notes in Mathematics 966, 271–303. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  14. 14.
    Tate, J.: Relations betweenK 2 and Galois cohomology. Invent. Math.36, 257–274 (1976)Google Scholar
  15. 15.
    Tate, J.: Algebraic cycles and poles of zeta functions. Arithmetical algebraic geometry (Purdue Lafayette 1963). Schilling, O.F.G. (ed.). New York: Harper & Row 1965Google Scholar
  16. SGA 4.
    Grothendieck, A., et al.: Théorie des topos et cohomologie étale des schémas. Tome 3. Lecture Notes in Mathematics 305. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  17. SGA 4 1/2.
    Deligne, P., et al.: Cohomologie étale. Lecture Notes in Mathematics 569. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  18. SGA 5.
    Grothendieck A., et al.: Cohomologiel-adique et fonctionsL. Lecture Notes in Mathematics 589. Berlin, Heidelberg, New York: Springer 1982Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Uwe Jannsen
    • 1
  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgFederal Republic of Germany

Personalised recommendations