Mathematische Annalen

, Volume 265, Issue 3, pp 377–397 | Cite as

Invariant forms on complex manifolds with application to holomorphic mappings

  • Eric Bedford


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlfors, L.: Conformal invariants: topics in geometric function theory. New York: McGraw-Hill 1973Google Scholar
  2. 2.
    Bedford, E.: Holomorphic mapping of products of annuli in ℂn. Pac. J. Math.87, 271–281 (1980)Google Scholar
  3. 3.
    Bedford, E., Taylor, B.A.: Variational properties of the complex Monge-Ampère equation. II. Intrinsic norms. Am. J. Math.101, 1131–1166 (1979)Google Scholar
  4. 4.
    Blatter, C.: Über Extremallängen auf geschlossenen Flächen. Comment. Math. Helv.35, 153–168 (1961)Google Scholar
  5. 5.
    Chern, S.-S., Levine, H., Nirenberg, L.: Intrinsic norms on a complex manifold, global analysis. Papers in honor of K. Kodaira, pp. 119–139. Princeton, NJ: Princeton University Press 1968Google Scholar
  6. 6.
    Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudo-convex domains. Invent. Math.36, 1–66 (1974)Google Scholar
  7. 7.
    Hörmander, L.: Introduction to complex analysis in several variables. Amsterdam: North-Holland 1973Google Scholar
  8. 8.
    Kerzman, N.: The Bergman kernel function: differentiability at the boundary. Math. Ann.195, 149–158 (1972)Google Scholar
  9. 9.
    Kerzman, N.: Singular integrals in complex analysis. Proc. Symp. Pure Math.35 Part 2, 3–41 (1979)Google Scholar
  10. 10.
    Kobayashi, S.: Geometry of bounded domains. Trans. Am. Math. Soc.93, 267–290 (1959)Google Scholar
  11. 11.
    Kohn, J.: Global regularity for\(\bar \partial \) on weakly pseudoconvex manifolds. Trans. Am. Math. Soc.181, 273–292 (1973)Google Scholar
  12. 12.
    Narasimhan, R.: On the homology groups of Stein spaces. Invent. Math.2, 377–385 (1967)Google Scholar
  13. 13.
    Ohtsuka, M.: Dirichlet problem, extremal length and prime ends. New York: Van Nostrand 1970Google Scholar
  14. 14.
    Phong, D.H., Stein, E.M.: Estimates for the Bergman and Szegö projections on strongly pseudoconvex domains. Duke Math. J.44, 695–704 (1977)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Eric Bedford
    • 1
  1. 1.Department of MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations