Mathematische Annalen

, Volume 262, Issue 3, pp 287–304

On primary ideals in the group algebra of a nilpotent Lie group

  • Jean Ludwig
Article
  • 36 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boidol, J., Leptin, H., Schürmann, J., Vahle, D.: Räume primitiver Ideale von Gruppenalgebren. Math. Ann.236, 1–13 (1978)Google Scholar
  2. 2.
    Brown, I.D.: Dual topology of a nilpotent Lie group. Ann. Sci. Ecole Norm. Sup.6, Sér. 4, 407–411 (1973)Google Scholar
  3. 3.
    Dixmier, J.: Opérateurs de rang fini dans les représentations unitaires. Publ. Math. IHES6, 305–317 (1960)Google Scholar
  4. 4.
    Dixmier, J.: Algèbres enveloppantes. Paris Gauthier-Villars 1974Google Scholar
  5. 5.
    Hey, H.J., Ludwig, J.: Der Satz von Helson-Reiter für spezielle nilpotente Lie-Gruppen. Math. Ann.239, 207–218 (1979)Google Scholar
  6. 6.
    Kirillow, A.A.: Unitary representations of nilpotent Lie groups. Usp. Math. Nauk17, 57–110 (1962)Google Scholar
  7. 7.
    Kirsch, W., Müller D.: On the synthesis problem for orbits of Lie groups in ℝn. Ark. Mat.18, 145–155 (1980)Google Scholar
  8. 8.
    Ludwig, J.: Polynomial growth and ideals in group algebras. Manuscripta Math.30, 215–221 (1980)Google Scholar
  9. 9.
    Ludwig, J.: On the synthesis problem for points in the dual of a nilpotent Lie group. Preprint 81Google Scholar
  10. 10.
    Schwartz, L.: Théorie des distributions. Paris: Hermann 1966Google Scholar
  11. 11.
    Dixmier, J., Malliavin, P.: Factorisation de fonctions et de vecteurs indéfiniment différentiables. Bull. Sci. math., II Sér.102, 305–330 (1978)Google Scholar
  12. 12.
    Reiter, H.: Classical harmonic analysis and locally compact groups. Oxford: Clarendon Press 1968Google Scholar
  13. 13.
    Leptin, H.: Ideal theory in group algebras of locally compact groups. Invent. Math.31, 259–278 (1976)Google Scholar
  14. 14.
    Domar, Y.: On the spectral synthesis problem for (n−1)-dimensional subsets of ℝn. Ark. Mat.9, 23–37 (1971)Google Scholar
  15. 15.
    Howe, R.: On a connection between nilpotent groups and oscillatory integrals associated to singularities. Pacific J. Math.73, 329–363 (1977)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Jean Ludwig
    • 1
  1. 1.Fakultät für Mathematik der UniversitätBielefeldFederal Republic of Germany

Personalised recommendations