Mathematische Annalen

, Volume 271, Issue 2, pp 237–268

Fourier coefficients of modular forms of half-integral weight

  • Winfried Kohnen
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.: Handbook of mathematical functions. New York: Dover 1965Google Scholar
  2. 2.
    Goldfeld, D., Hoffstein, J., Patterson, S.J.: On automorphic functions of half-integral weight with applications to elliptic curves. In: Number theory related to Fermat's last theorern, Proc. of a Conf. sponsored by the Vaughn Foundation, ed. N. Koblitz. Progress in Maths. Vol. 26. Boston: Birkhäuser 1982Google Scholar
  3. 3.
    Gross, D., Zagier, D.: Points de Heegner et dérivées des fonctionsL. Preprint 1983Google Scholar
  4. 4.
    Kohnen, W.: Beziehungen zwischen Modulformen halbganzen Gewichts und Modulformen ganzen Gewichts. Dissertation. Bonn. Math. Schr.131 (1981)Google Scholar
  5. 5.
    Kohnen, W.: Newforms of half-integral weight. J. reine angew. Math.333, 32–72 (1982)Google Scholar
  6. 6.
    Kohnen, W., Zagier, D.: Values ofL-series of modular forms at the center of the critical strip. Invent. Math.64, 175–198 (1981)Google Scholar
  7. 7.
    Kohnen, W., Zagier, D.: Modular forms with rational periods. In: Modular forms, ed. R.A. Rankin, Ellis Horwood Limited Publishers, Chichester, 1984Google Scholar
  8. 8.
    Manin, Y.: Periods of parabolic forms andp-adic Hecke series. Math. USSR Sb.,21, 371–393 (1973)Google Scholar
  9. 9.
    Niwa, S.: Modular forms of half-integral weight and the integral of certain theta-functions. Nagoya Math. J.56, 147–161 (1974)Google Scholar
  10. 10.
    Niwa, S.: On certain thera functions and modular forms of half-integral weight. Preprint 1983Google Scholar
  11. 11.
    Rankin, R.A.: The scalar product of modular forms. Proc. Lond. Math. Soc.2, 198–217 (1972)Google Scholar
  12. 12.
    Sarnak, P.: Class numbers of indefinite binary quadratic forms. J. Number Theory15, 229–247 (1982)CrossRefGoogle Scholar
  13. 13.
    Shimura, G.: The special values of the zeta functions associated with cusp forms. Commun. Pure appl. Math.29, 783–804 (1976)Google Scholar
  14. 14.
    Shimura, G.: On modular forms of half-integral weight. Ann. Math.97, 440–481 (1973)Google Scholar
  15. 15.
    Shimura, G.: The critical values of certain zeta functions associated with modular forms of half-integral weight. J. Math. Soc. Japan33, 649–672 (1981)Google Scholar
  16. 16.
    Shintani, T.: On construction of holomorphic cusp forms of half-integral weight. Nagoya Math. J.58, 83–126 (1975)Google Scholar
  17. 17.
    Siegel, C.L.: Über die Klassenzahl quadratischer Zahlkörper. Acta Arithm.1, 83–86 (1935)Google Scholar
  18. 18.
    Waldspurger, J.L.: Correspondances de Shimura et Shintani. J. Math. Pures Appl.59, 1–133 (1980)Google Scholar
  19. 19.
    Waldspurger, J.L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl.60, 375–484 (1981)Google Scholar
  20. 20.
    Zagier, D.: Modular forms associated to real quadratic fields. Invent. Math.30, 1–46 (1975)Google Scholar
  21. 21.
    Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. In: Modular forms of one variable VI. Lect. Notes Math., vol. 627, pp. 105–169. Berlin, Heidelberg, New York: Springer 1977Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Winfried Kohnen
    • 1
  1. 1.Max-Planck-Institut für MathematikBonn 3Federal Republic of Germany
  2. 2.Naturwissenschaftliche FakultätUniversität AugsburgAugsburgFRG

Personalised recommendations