Mathematische Annalen

, Volume 267, Issue 4, pp 473–478

Regularity of the Bergman projection and duality of holomorphic function spaces

  • Steven R. Bell
  • Harold P. Boas


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R.A.: Sobolev spaces. New York: Academic Press 1975Google Scholar
  2. 2.
    Barrett, D.: A smooth bounded domain in ℂ whose Bergman projection operator is not globally regular. Ann. Math. (to appear)Google Scholar
  3. 3.
    Bell, S.R.: Biholomorphic mappings and the\(\bar \partial \)-problem. Ann. Math.114, 103–113 (1981)Google Scholar
  4. 4.
    Bell, S.R.: Proper holomorphic mappings and the Bergman projection. Duke Math. J.48, 167–175 (1981)Google Scholar
  5. 5.
    Bell, S.R.: A representation theorem in strictly pseudoconvex domains. Ill. J. Math.26, 19–26 (1982)Google Scholar
  6. 6.
    Bell, S.R., Boas, H.P.: Regularity of the Bergman projection in weakly pseudoconvex domains. Math. Ann.257, 23–30 (1981)Google Scholar
  7. 7.
    Bell, S.R., Catlin, D.: Boundary regularity of proper holomorphic mappings. Duke Math. J.49, 385–396 (1982)Google Scholar
  8. 8.
    Boas, H.P.: Holomorphic reproducing kernels in Reinhardt domains. Pac. J. Math.113 (1984) (in press)Google Scholar
  9. 9.
    Catlin, D.: Boundary behavior of holomorphic functions on pseudoconvex domains. J. Differential Geometry15, 605–625 (1980)Google Scholar
  10. 10.
    Diederich, K., Fornaess, J.E.: Boundary regularity of proper holomorphic mappings. Invent. Math.67, 363–384 (1982)Google Scholar
  11. 11.
    Diederich, K., Fornaess, J.E.: Pseudoconvex domains: bounded plurisubharmonic exhaustion functions. Invent. Math.39, 129–141 (1977)Google Scholar
  12. 12.
    Greene, R.E., Krantz, S.G.: Deformation of complex structures, estimates for the\(\bar \partial \) equation, and stability of the Bergman kernel. Adv. Math.43, 1–86 (1982)Google Scholar
  13. 13.
    Kohn, J.J.: Global regularity for\(\bar \partial \) on weakly pseudo-convex manifolds. Trans. Am. Math. Soc.181, 273–292 (1973)Google Scholar
  14. 14.
    Korenblum, B.: An extension of the Nevanlinna theory. Acta Math.135, 187–219 (1975)Google Scholar
  15. 15.
    Korenblum, B.: A Beurling-type theorem. Acta Math.138, 265–293 (1977)Google Scholar
  16. 16.
    Ramadanov, I.: Sur une propriété de la fonction de Bergman. C. R. Acad. Bulg. Sci.20, 759–762 (1967)Google Scholar
  17. 17.
    Range, R.M.: A remark on bounded strictly plurisubharmonic exhaustion functions. Proc. Am. Math. Soc.81, 220–222 (1981)Google Scholar
  18. 18.
    Taylor, B.A., Williams, D.L.: Ideals in rings of analytic functions with smooth boundary values. Canad. J. Math.22, 1266–1283 (1970)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Steven R. Bell
    • 1
  • Harold P. Boas
    • 2
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations