Mathematische Annalen

, Volume 267, Issue 4, pp 439–448

Detecting the standard embedding of≡P2 inS4

  • Terry Lawson
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [F] Freedman, M.: The topology of four-dimensional manifolds. J. Differential Geometry17, 357–453 (1982)Google Scholar
  2. [L 1] Lawson, T.: Splitting spheres as codimensionr doubles. Houston J. Math.8, 205–220 (1982)Google Scholar
  3. [L 2] Lawson, T.: SplittingS 4 on≡P 2 via the branched cover ofℂP 2 overS 4. Proc. Am. Math. Soc.86, 328–330 (1982)Google Scholar
  4. [Ma] Mandelbaum, R.: Four dimensional topology: an introduction. Bull. Am. Math. Soc.2, 1–159 (1980)Google Scholar
  5. [M 1] Massey, W.: Proof of a conjecture of Whitney. Pac. J. Math.31, 143–156 (1969)Google Scholar
  6. [M 2] Massey, W.: Imbeddings of projective planes and related manifolds in spheres. Ind. Math. J.23, 791–812 (1973)Google Scholar
  7. [P] Price, T.: Homeomorphisms of quaternionic space and projective planes in four space. J. Aust. Math. Soc.23, 112–128 (1977)Google Scholar
  8. [R] Rubinstein, J.: On 3-manifolds that have finite fundamental group and contain Klein bottles. Trans. Am. Math. Soc.251, 129–137 (1979)Google Scholar
  9. [S] Sullivan, D.: Triangulating homotopy equivalences. Ph.D. Thesis. Princeton University 1966Google Scholar
  10. [W] Wall, C.T.C.: Surgery on compact manifolds. London, New York: Academic Press 1970Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Terry Lawson
    • 1
  1. 1.Department of MathematicsTulane UniversityNew OrleansUSA

Personalised recommendations