Mathematische Annalen

, Volume 265, Issue 4, pp 473–487 | Cite as

Refinement monoids, Vaught monoids, and Boolean algebras

  • Hans Dobbertin
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Day, G.W.: Superatomic Boolean algebras. Pac. J. Math.23, 479–489 (1967)Google Scholar
  2. 2.
    Dobbertin, H.: Verfeinerungsmonoide, Vaught Monoide und Boolesche Algebren. Dissertation, Universität Hannover, 1983Google Scholar
  3. 3.
    Dobbertin, H.: On Vaught's criterion for isomorphisms of countable Boolean algebras. Algebra Univ.15, 95–114 (1982)Google Scholar
  4. 4.
    Dobbertin, H.: Primely generated regular refinement monoids. J. Algebra (to appear)Google Scholar
  5. 5.
    Hanf, W.: Primitive Boolean algebras. In: Proc. Symp. Pure Math. (Proceedings of the Tarski Symposium, Berkeley, California, 1971), No. 25, pp. 75–90. Providence, R.I.: AMS 1974Google Scholar
  6. 6.
    Ketonen, J.: The structure of countable Boolean algebras. Ann. Math.108, 41–89 (1978)Google Scholar
  7. 7.
    Myers, D.: Measures on Boolean algebras, orbits in Boolean spaces, and an extension of transcendence rank. Notices AMS24, A-447 (1977)Google Scholar
  8. 8.
    Myers, D.: Structures and measures on Boolean algebras (manuscript)Google Scholar
  9. 9.
    Pierce, R.S.: Compact zero-dimensional metric spaces of finite type. Memoirs AMS, No. 130. Providence, R.I.: 1972Google Scholar
  10. 10.
    Pierce, R.S.: Tensor products of Boolean algebras. In: Universal algebra and lattice theory, Proceedings of the Fourth International Conference, Puebla 1982. R. S. Freese, O. C. Garcia (eds.). Lecture Notes in Mathematics, No. 1004, pp. 232–239. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  11. 11.
    Vaught, R.L.: Topics in the theory of arithmetical classes and Boolean algebras. Dissertation, University of California, Berkeley, 1954Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Hans Dobbertin
    • 1
  1. 1.Mathematisches Institut der UniversitätHannover 1Federal Republic of Germany

Personalised recommendations