Mathematische Annalen

, Volume 271, Issue 1, pp 153–160 | Cite as

Babylonian tower theorems on the punctured spectrum

  • Hubert Flenner
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barth, W.: Submanifolds of low codimension in projective space. Proc. ICM Vancouver, pp. 409–413 (1975)Google Scholar
  2. 2.
    Barth, W., Van de Ven, A.: A decomposability, criterion for algebraic, 2-bundles on projective spaces. Invent. Math.25, 91–106 (1974)Google Scholar
  3. 3.
    Evans, E.G., Griffith, P.: Lifting syzygies and extending algebraic vector bundles. J. Am. Math. Soc. (to appear)Google Scholar
  4. 4.
    Evans, E.G., Griffith, P.: Filtering cohomology and lifting vector bundles. Preprint Urbana 1984Google Scholar
  5. 5.
    Faltings, E.: Ein Kriterium für vollständige Durchschnitte. Invent. Math.62, 393–401 (1981)Google Scholar
  6. 6.
    Grothendieck, A.: Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux (SGA 2). Amsterdam: North-Holland 1968Google Scholar
  7. 7.
    Grothendieck, A., Dieudonné. J. Eléments de géométrie algébrique. Publ. Math. IHES4, 8, 11, 17, 20, 24, 28, 32 (1960–67)Google Scholar
  8. 8.
    Hartshorne, R.: Algebraic vector bundles on projective spaces: a problem list. Topology18, 117–128 (1979)Google Scholar
  9. 9.
    Hartshorne, R.: Equivalence relations on algebraic cycles and subvarieties of small codimension. In: Algebraic geometry. Arcata 1974. Providence: AMS 1975Google Scholar
  10. 10.
    Horrocks, G.: On extending vector bundles over projective space. Quart. J. Math.17, 14–18 (1966)Google Scholar
  11. 11.
    Sato, E.: On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties. J. Math. Kyoto Univ.17, 127–150 (1977)Google Scholar
  12. 12.
    Sato, E.: The decomposability of an infinitely extendable vector bundle on the projective space. II. In: International Symposium on Algebraic Geometry Kyoto 1977, pp. 663–672, Tokyo: KinokuniyaGoogle Scholar
  13. 13.
    Schlessinger, M.: Functors of Artin rings. Trans. AMS130, 205–222 (1968)Google Scholar
  14. 14.
    Serre, J.P.: Algèbre locale, multiplicités. Lect. Notes Math. 11. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  15. 15.
    Tyurin, A.N.: Finite dimensional vector bundles over infinite varieties. Math. USSR Izv.10, 1187–1204 (1976)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Hubert Flenner
    • 1
  1. 1.Mathematisches Institut der UniversitätGöttingenFederal Republic of Germany

Personalised recommendations