Mathematische Annalen

, Volume 272, Issue 3, pp 399–419 | Cite as

Rational homology of Bianchi groups

  • Karen Vogtmann
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ash, A.: Deformation retracts with lowest possible dimension of arithmetic quotients of selfadjoint homogeneous cones. Math. Ann.225, 69–76 (1977)Google Scholar
  2. 2.
    Baker, M.: Ramified primes and the homology of the Bianchi groups. I.H.E.S. preprint (1982)Google Scholar
  3. 3.
    Bianchi, L.: Sui gruppe di sostituzioni lineari con coefficienti appartenenti a corpi quadratici imaginari. Math. Ann.40, 332–412 (1892)Google Scholar
  4. 4.
    Borel, A.: Cohomology of arithmetic groups. Proceedings of the International Congress of Mathematicians, pp. 435–442. Vancouver (1974)Google Scholar
  5. 5.
    Chatelet, A.: Les corps quadratiques. Geneve, Enseign. Math. II Ser. (1962)Google Scholar
  6. 6.
    Grunewald, F., Mennicke, J.: Some 3-manifolds arising from PSL (2, ℤ[i]). Arch. Math.35, 275–291 (1980)Google Scholar
  7. 7.
    Grunewald, F., Schwermer, J.: Arithmetic quotients of hyperbolic 3-space, cusp forms and link complements. Duke Math. J.48, 183–200 (1981)Google Scholar
  8. 8.
    Harder, G.: On the cohomology of SL(2,O). In: Lie groups and their representations. Proceedings of the summer school on group representations pp. 139–150. London: Hilger 1975Google Scholar
  9. 9.
    Herz, C.: Construction of class fields. Seminar on complex multiplication. Lect. Notes Math. 21. Berlin, Heidelberg, New York: Springer 1966Google Scholar
  10. 10.
    Humbert, G.: Sur la reduction des formes d'Hermite dans un corps quadratique imaginaire. C.R. Acad. Sci. Paris161, 409–455 (1915)Google Scholar
  11. 11.
    Kramer: Unpublished workGoogle Scholar
  12. 12.
    Mendoza, E.: Cohomology of PGL(2) over imaginary quadratic integers. Bonner Math. Sch.128 253–270 (1980)Google Scholar
  13. 13.
    Rohlfs, J.: On the cuspidal cohomology of the Bianchi modular group. Math. Zeit.188, 253–270 (1985)Google Scholar
  14. 14.
    Schwermer, J., Vogtmann, K.: The integral homology of SL(2) and PSL(2) of Euclidean imaginary quadratic integers. Comment. Math. Helv.58, 573–598 (1983)Google Scholar
  15. 15.
    Serre, J.-P.: Le probleme des groupes de congruence pour SL(2). Ann. Math.92, 489–527 (1972)Google Scholar
  16. 16.
    Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Tokyo: Iwanami Shoten and Princeton: University Press 1971Google Scholar
  17. 17.
    Siegel, C.L.: On advanced analytic number theory. Lectures on Maths and Physics v. 23. Bombay: Tata Institute 1961Google Scholar
  18. 18.
    Swan, R.: Generators and relations for certain special linear groups. Adv. Math.6, 1–78 (1971)Google Scholar
  19. 19.
    Zimmert, R.: Zur SL(2) der ganzen Zahlen eines imaginär quadratischen Zahlkörpers. Invent. Math.19, 73–82 (1973)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Karen Vogtmann
    • 1
  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations