Mathematische Annalen

, Volume 270, Issue 1, pp 97–103 | Cite as

Lie semialgebras are real phenomena

  • Joachim Hilgert
  • Karl Heinrich Hofmann
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bo]
    Bourbaki, N.: Groupes et algèbres de Lie, Chaps. 1–8. Paris: Hermann 1972Google Scholar
  2. [Br]
    Brockett, R.W.: Lie algebras and Lie groups in control theory. In: Geometric methods in systems theory, pp. 43–82, Hingham, MA: Reidel 1973Google Scholar
  3. [Gr]
    Graham, G.: Differentiability and semigroups, Dissertation. Univ. of Houston, 1979Google Scholar
  4. [Gr]
    Graham, G.: Differentiable semigroups. Lecture Notes in Mathematics, Vol. 998, pp. 57–127. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  5. [HH 1]
    Hilgert, J., Hofmann, K.H.: Old and new onSl(2). Submitted, Preprint Nr. 810, TH Darmstadt, März 1984Google Scholar
  6. [HH2]
    Hilgert, J., Hofmann, K.H.: Semigroups in Lie groups, Lie semialgebras in Lie algebras. Preprint Nr. 779, TH Darmstadt, 1983Google Scholar
  7. [HH3]
    Hilgert, J., Hofmann, K.H.: Lie semialgebras are real phenomena. Preprint Nr. 785, TH Darmstadt, 1983Google Scholar
  8. [HH4]
    Hilgert, J., Hofmann, K.H.: The invariance of cones and wedges under flows. Preprint Nr. 796, TH Darmstadt, 1983Google Scholar
  9. [HH5]
    Hilgert, J., Hofmann, K.H.: On Sophus Lie's fundamental theorems. Preprint TH Darmstadt, 1984Google Scholar
  10. [HH6]
    Hilgert, J., Hofmann, K.H.: Lie theory for semigroups. Semigroup Forum. Preprint Nr. 807, TH Darmstadt, 1984Google Scholar
  11. [Hi]
    Hirschorn, R.: Topological semigroups, sets of generators, and controllability. Duke J. Math.40, 937–949 (1973)Google Scholar
  12. [HL1]
    Hofmann, K.H., Lawson, J.D.: The local theory of semigroups in nilpotent Lie groups. Semigroup Forum23, 343–357 (1981)Google Scholar
  13. [HL2]
    Hofmann, K.H., Lawson, J.D.: Foundations of Lie semigroups. Lecture Notes in Mathematics, Vol. 998, pp. 128–201, Berlin, Heidelberg, New York: Springer 1983Google Scholar
  14. [HL3]
    Hofmann, K.H., Lawson, J.D.: On Sophus Lie's fundamental theorems, I. Indag. Math.45, 453–466 (1983)Google Scholar
  15. [HL4]
    Hofmann, K.H., Lawson, J.D.: On Sophus Lie's fundamental theorems, II. Math. (to appear, 1984)Google Scholar
  16. [HL5]
    Hofmann, K.H., Lawson, J.D.: Divisible subsemigroups of Lie groups. J. London Math. Soc.27, 427–434 (1983)Google Scholar
  17. [HL6]
    Hofmann, K.H., Lawson, J.D.: On the description of the closed local semigroups generated by a wedge. SLS-Memo 03-16-83; cf. also preprint “Generating local semigroups in Lie groups”, Louisiana State University, Baton Rouge, La., 1984Google Scholar
  18. [Ho]
    Houston, R.: Cancellative semigroups on manifolds, Dissertation, Univ. of Houston, 1973Google Scholar
  19. [HP]
    Hille, E., Phillipps, R.S.: Functional analysis and semigroups. Providence: Amer. Math. Soc. 1957Google Scholar
  20. [JS]
    Jurdjevic, V., Sussmann, H.J.: Control systems on Lie groups. J. Diff. Equations12, 313–329 (1972)Google Scholar
  21. [La]
    Langlands, R.P.: On Lie semigroups, Canad. J. Math.12, 686–693 (1960)Google Scholar
  22. [Lo1]
    Loewner, C.: On some transformation semigroups. J. Rat. Mech. Anal.5, 791–804 (1956)Google Scholar
  23. [Lo2]
    Loewner, C.: A theorem on the partial order derived from a certain transformation semigroup. Math. Z.72, 53–60 (1959)Google Scholar
  24. [Lo3]
    Loewner, C.: On some transformation semigroups invariant under Euclidean and non-Euclidean isometries. J. Math. Mech.8, 393–409 (1959)Google Scholar
  25. [Lo4]
    Loewner, C.: On semigroups and geometry. Bull. Am. Math. Soc.70, 1–15 (1964)Google Scholar
  26. [O11]
    Ol'shanskii, G.I.: Invariant cones in Lie algebras, Lie semigroups, and the holomorphic discrete series. Functional Anal. Appl.15, 275–285 (1981)Google Scholar
  27. [O12]
    Ol'shanskii, G.I.: Convex cones in symmetric Lie algebras, Lie semigroups, and invariant causal (order) structures on pseudo Riemannian symmetric spaces. Dok. Sov. Math.26, 97–101 (1982)Google Scholar
  28. [Pa1]
    Paneitz, S.M.: Invariant convex cones and causality in semisimple Lie algebras and groups. J. Functional Analysis.43, 313–359 (1981)Google Scholar
  29. [Pa2]
    Paneitz, S.M.: Classification of invariant convex simple Lie algebras (to appear)Google Scholar
  30. [Po]
    Poguntke, D.: Well bounded semigroups in connected groups. Semigroups Forum15, 159–167 (1977)Google Scholar
  31. [Ro]
    Rothkrantz, L.J.M.: Transformatiehalfgroepen van nietcompacte hermetische symmetrische Ruimten. Dissertation, 116 pp. University of Amsterdam (1980)Google Scholar
  32. [Vi]
    Vinberg, E.B.: Invariant cones and orderings in Lie groups. Functional Anal. Appl.14, 1–13 (1980).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Joachim Hilgert
    • 1
  • Karl Heinrich Hofmann
    • 1
  1. 1.Fachbereich Mathematik der TH DarmstadtDarmstadtFederal Republic of Germany

Personalised recommendations