Mathematische Annalen

, Volume 261, Issue 3, pp 339–357

Arrangements defined by unitary reflection groups

  • Peter Orlik
  • Louis Solomon
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, M.: Combinatorial theory. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  2. 2.
    Benard, M.: Characters and Schur indices of the unitary reflection group [321]3. Pacific J. Math.58, 309–321 (1975)Google Scholar
  3. 3.
    Benard, M.: Schur indices and splitting fields of the unitary reflection groups. J. Algebra38, 318–342 (1976)Google Scholar
  4. 4.
    Bourbaki, N.: Groupes et algèbres de Lie, Chaps. 4–6. Paris: Hermann 1968Google Scholar
  5. 5.
    Brylawski, T.: A decomposition for combinatorial geometries. Trans. Am. Math. Soc.171, 235–282 (1972)Google Scholar
  6. 6.
    Burnside, W.: Theory of groups of finite order. Cambridge: Cambridge University Press 1911; repr. New York: Dover 1955Google Scholar
  7. 7.
    Cohen, A.M.: Finite complex reflection groups. Ann. Sci. École Norm. Sup. 4e sér.9, 379–436 (1976)Google Scholar
  8. 8.
    Dowling, T.: Aq-analog of the partition lattice. In: A survey of combinatorial theory. Srivastava, ed., pp. 101–115. Amsterdam: North-Holland 1973Google Scholar
  9. 9.
    Dowling, T.: A class of geometric lattices based on finite groups. J. Comb. Theory (B)14, 61–86 (1973)Google Scholar
  10. 10.
    Frame, J.S.: The simple group of order 25,920. Duke J. Math.2, 477–484 (1936)Google Scholar
  11. 11.
    Orlik, P., Solomon, L..: Unitary reflection groups and cohomology. Invent. Math.59, 77–94 (1980)Google Scholar
  12. 12.
    Orlik, P., Solomon, L.: Complexes for reflection groups. Proc. Midwest Algebraic Geometry Conf. Lecture Notes in Mathematics, Vol. 862, pp. 193–207. Berlin, Heidelberg, New York: Springer 1981Google Scholar
  13. 13.
    Orlik, P., Solomon, L.: Coxeter arrangements. Am. Math. Soc. Proc. Symp. Pure Math.40 (forthcoming)Google Scholar
  14. 14.
    Schur, I.: Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math.139, 155–250 (1911); repr. in Gesammelte Abhandlungen I, pp. 346–441. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  15. 15.
    Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math.6, 274–304 (1954)Google Scholar
  16. 16.
    Springer, T.A.: Regular elements of finite reflection groups. Invent. Math.25, 159–198 (1974)Google Scholar
  17. 17.
    Srinivasan, B.: The characters of the finite symplectic group Sp(4,q). Trans. Am. Math. Soc.131, 488–525 (1968)Google Scholar
  18. 18.
    Steinberg, R.: Differential equations invariant under finite reflection groups. Trans. Am. Math. Soc.112, 392–400 (1964)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Peter Orlik
    • 1
  • Louis Solomon
    • 1
  1. 1.Department of MathematicsUniversity of WisconsinMadisonUSA

Personalised recommendations