Advertisement

Mathematische Annalen

, Volume 262, Issue 2, pp 145–166 | Cite as

Harmonic mappings and Kähler manifolds

  • Jürgen Jost
  • Shing-Tung Yau
Article

Keywords

Manifold Harmonic Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.: The signature of fibre bundles. In: Global analysis, ed. D.C. Spencer, S. Iyanaga. Tokyo, Princeton: Princeton University Press 1969Google Scholar
  2. 2.
    Bers, L.: An outline of the theory of pseudoanalytic functions. Bull. Am. Math. Soc.62, 291–331 (1956)Google Scholar
  3. 3.
    Eells, J., Lemaire, L.: A report on harmonic maps. Bull. London Math. Soc.10, 1–68 (1978)Google Scholar
  4. 4.
    Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978Google Scholar
  5. 5.
    Heinz, E.: On certain nonlinear elliptic differential equations and univalent mappings, J. Anal. Math.5, 197–272 (1956/57)Google Scholar
  6. 6.
    Hirzebruch, F.: The signature of ramified coverings. In: Global analysis, ed. D.C. Spencer, S. Iyanaga: Tokyo, Princeton: Princeton University Press 1969Google Scholar
  7. 7.
    Kas, A.: On deformations of a certain type of irregular algebraic surfaces. Am J. Math.90, 789–804 (1968)Google Scholar
  8. 8.
    Kaup, B.: Über offene analytische Äquivalenzrelationen auf komplexen Räumen. Math. Ann.183, 6–16 (1969)Google Scholar
  9. 9.
    Kodaira, K.: On the structure of compact complex analytic surfaces. Proc. Nat. Acad. Sci. USA50, 218–221 (1963)Google Scholar
  10. 10.
    Kodaira, K.: A certain type of irregular algebraic surfaces. J. Anal. Math.19, 207–215 (1967)Google Scholar
  11. 11.
    Kodaira, K., Spencer, D.C.: On deformations of complex analytic structures. I, II. Ann. Math.67, 328–466 (1958)Google Scholar
  12. 12.
    Kodaira, K., Spencer, D.C.: On deformations of complex analytic structures. III. Stability theorems for complex structures. Ann. Math.71, 43–76 (1960)Google Scholar
  13. 13.
    Mostow, G.D.: Strong rigidity of locally symmetric spaces. Ann. Math. Studies 78, Princeton: Princeton University Press 1973Google Scholar
  14. 14.
    Sampson, J.H.: Some properties and applications of harmonic mappings. Ann. Sci. Ecole Norm. Sup.11, 211–228 (1978)Google Scholar
  15. 15.
    Schoen, R., Yau, S.T.: On univalent harmonic maps between surfaces. Invent. Math.44, 265–278 (1978)Google Scholar
  16. 16.
    Siu, Y.T.: The complex analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds. Ann. Math.112, 73–111 (1980)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Jürgen Jost
    • 1
  • Shing-Tung Yau
    • 2
  1. 1.Mathematisches Institut der Universität BonnBonn 1Federal Republic of Germany
  2. 2.Institute for Advanced StudyPrincetonUSA

Personalised recommendations