Advertisement

Mathematische Annalen

, Volume 285, Issue 3, pp 481–501 | Cite as

Arithmetical graphs

  • Dino J. Lorenzini
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M., Winters, G.: Degenerate fibers and stable reduction of curves. Topology10, 373–383 (1971)Google Scholar
  2. 2.
    Berge, C.: Graphes. Paris: Gauthier-Villars 1983Google Scholar
  3. 3.
    Berman, A., Plemmons, R.: Non negative matrices in the mathematical sciences. New York London: Academic Press 1979Google Scholar
  4. 4.
    Biggs, N.: Algebraic graph theory. Cambridge: University Press 1974Google Scholar
  5. 5.
    Jacobson, N.: Basic algebra I. San Francisco: Freeman 1974Google Scholar
  6. 6.
    Lenstra, H., Oort, F.: Abelian varieties having purely additive reduction. J. Pure Appl. Algebra36, 281–298 (1985)Google Scholar
  7. 7.
    Lorenzini, D.: Degenerating curves and their jacobians. Berkeley Ph.D. Thesis, 1988Google Scholar
  8. 8.
    Lorenzini, D.: Groups of components of Néron models of jacobians. To appear in Compos. Math.Google Scholar
  9. 9.
    Namikawa, Y., Ueno, K.: The complete classification of fibres in pencils of curves of genus 2. Manuscr. Math.9, 143–186 (1973)Google Scholar
  10. 10.
    Saito, T.: Vanishing cycles and the geometry of curves over a discrete valuation ring. Am. J. Math.109, 1043–1085 (1987)Google Scholar
  11. 11.
    Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular functions in one variable IV. Lect. Notes in Math. vol. 476. Berlin Heidelberg New York: Springer 1975Google Scholar
  12. 12.
    Winters, G.: On the existence of certain families of curves. Am. J. Math.96, 215–228 (1974)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Dino J. Lorenzini
    • 1
  1. 1.Department of MathematicsUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations