Communications in Mathematical Physics

, Volume 106, Issue 2, pp 321–344

Causal independence and the energy-level density of states in local quantum field theory

  • Detlev Buchholz
  • Eyvind H. Wichmann
Article

Abstract

Within the general framework of local quantum field theory a physically motivated condition on the energy-level density of well-localized states is proposed and discussed. It is shown that any model satisfying this condition obeys a strong form of the principle of causal (statistical) independence, which manifests itself in a specific algebraic structure of the local algebras (“split property”). It is also shown that the proposed condition holds in a free field theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5, 848 (1964)Google Scholar
  2. 2.
    Doplicher, S., Haag, R., Roberts, J.E.: Fields, observables, and gauge transformations. Commun. Math. Phys.13, 1 (1969)Google Scholar
  3. 3.
    Streater, R.F., Wightman, A.S.: PCT, spin and statistics and all that. New York: Benjamin 1964Google Scholar
  4. 4.
    Haag, R., Swieca, J.A.: When does a quantum field theory describe particles? Commun. Math. Phys.1, 308 (1965)Google Scholar
  5. 5.
    Enß, V.: Characterization of particles by means of local observables. Commun. Math. Phys.45, 35 (1975)Google Scholar
  6. 6.
    Schlieder, S.: Einige Bemerkungen über Projektionsoperatoren. Commun. Math. Phys.13, 216 (1969)Google Scholar
  7. 7.
    Roos, H.: Independence of local algebras in quantum field theory. Commun. Math. Phys.16, 238 (1970)Google Scholar
  8. 8.
    Buchholz, D.: Product states for local algebras. Commun. Math. Phys.36, 287 (1974)Google Scholar
  9. 9.
    Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. math.73, 493 (1984)Google Scholar
  10. 10.
    Summers, S.J.: Normal product states for fermions and twisted duality for CCR-and CAR-type algebras with application to the Yukawa2 quantum field model. Commun. Math. Phys.86, 111 (1982)Google Scholar
  11. 11.
    D'Antoni, C., Longo, R.: Interpolation by typeI factors and the flip automorphism. J. Funct. Anal.51, 361 (1983)Google Scholar
  12. 12.
    Glimm, J., Jaffe, A.: The energy momentum spectrum and vacuum expectation values in quantum field theory. II. Commun. Math. Phys.22, 1 (1971)Google Scholar
  13. 13.
    Doplicher, S.: Local aspects of superselection rules. Commun. Math. Phys.85, 73 (1982)Google Scholar
  14. 14.
    Doplicher, S., Longo, R.: Local aspects of superselection rules. II. Commun. Math. Phys.88, 399 (1985)Google Scholar
  15. 15.
    Buchholz, D., Doplicher, S., Longo, R.: On Noethers theorem in quantum field theory (to appear in Ann. Phys.)Google Scholar
  16. 16.
    Driessler, W.: Duality and absence of locally generated superselection sectors for CCR-type algebras. Commun. Math. Phys.70, 213 (1979)Google Scholar
  17. 17.
    Fröhlich, J.: Quantum theory of non-linear invariant wave (field) equations or: superselection sectors in constructive quantum field theory. In: Invariant wave equations. Lecture Notes in Physics, Vol. 73. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  18. 18.
    Buchholz, D.: Work in progressGoogle Scholar
  19. 19.
    Buchholz, D., Junglas, P.: Local properties of equilibrium states and the particle spectrum in quantum field theory. Lett. Math. Phys.11, 51 (1986)Google Scholar
  20. 20.
    Knight, J.M.: Strict localization in quantum field theory. J. Math. Phys.2, 459 (1961)Google Scholar
  21. 21.
    Olesen, P.: On the exponentially increasing level density in string models and the tachyon singularity. Nucl. Phys. B267, 539 (1986)Google Scholar
  22. 22.
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc.16, 1 (1955)Google Scholar
  23. 23.
    Gross, D.J., Pisarski, R.D., Yaffe, L.G.: QCD and instantons at finite temperature. Rev. Mod. Phys.53, 43 (1981)Google Scholar
  24. 24.
    Licht, A.L.: Strict localization. J. Math. Phys.4, 1443 (1963)Google Scholar
  25. 25.
    Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics. I. Commun. Math. Phys.23, 199 (1971)Google Scholar
  26. 26.
    Sakai, S.:C*-algebras andW*-algebras. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  27. 27.
    Borchers, H.J.: A remark on a theorem of B. Misra. Commun. Math. Phys.4, 315 (1967)Google Scholar
  28. 28.
    Borchers, H.J.: Energy and momentum as observables in quantum field theory. Commun. Math. Phys.2, 49 (1966)Google Scholar
  29. 29.
    Borchers, H.J.: On the vacuum state in quantum field theory. Commun. Math. Phys.1, 57 (1965)Google Scholar
  30. 30.
    Pommerenke, Ch.: Private communicationGoogle Scholar
  31. 31.
    Buchholz, D., D'Antoni, C., Fredenhagen, K.: The universal structure of local algebras in quantum field theory (to appear)Google Scholar
  32. 32.
    Araki, H.: Von Neumann algebras of observables for free scalar field. J. Math. Phys.5, 1 (1964)Google Scholar
  33. 33.
    Wightman, A.S.: Recent achievements of axiomatic field theory. In: Trieste lecture notes 1962. Vienna: IAEA 1963Google Scholar
  34. 34.
    Schroer, B.: Infrateilchen in der Quantenfeldtheorie. Fortschr. Phys.11, 1 (1963)Google Scholar
  35. 35.
    Kosaki, H.: On the continuity of the map ϕ →|ϕ| from the predual of aW*-algebra. J. Funct. Anal.59, 123 (1984)Google Scholar
  36. 36.
    Longo, R.: Private communicationGoogle Scholar
  37. 37.
    Buchholz, D., Jacobi, P.: On the nuclearity condition for massless fields (to be published)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Detlev Buchholz
    • 1
  • Eyvind H. Wichmann
    • 2
  1. 1.II. Institut für Theoretische Physik der Universität HamburgHamburg 50Germany
  2. 2.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations