Advertisement

Communications in Mathematical Physics

, Volume 106, Issue 2, pp 321–344 | Cite as

Causal independence and the energy-level density of states in local quantum field theory

  • Detlev Buchholz
  • Eyvind H. Wichmann
Article

Abstract

Within the general framework of local quantum field theory a physically motivated condition on the energy-level density of well-localized states is proposed and discussed. It is shown that any model satisfying this condition obeys a strong form of the principle of causal (statistical) independence, which manifests itself in a specific algebraic structure of the local algebras (“split property”). It is also shown that the proposed condition holds in a free field theory.

Keywords

Neural Network Statistical Physic Field Theory Complex System Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5, 848 (1964)Google Scholar
  2. 2.
    Doplicher, S., Haag, R., Roberts, J.E.: Fields, observables, and gauge transformations. Commun. Math. Phys.13, 1 (1969)Google Scholar
  3. 3.
    Streater, R.F., Wightman, A.S.: PCT, spin and statistics and all that. New York: Benjamin 1964Google Scholar
  4. 4.
    Haag, R., Swieca, J.A.: When does a quantum field theory describe particles? Commun. Math. Phys.1, 308 (1965)Google Scholar
  5. 5.
    Enß, V.: Characterization of particles by means of local observables. Commun. Math. Phys.45, 35 (1975)Google Scholar
  6. 6.
    Schlieder, S.: Einige Bemerkungen über Projektionsoperatoren. Commun. Math. Phys.13, 216 (1969)Google Scholar
  7. 7.
    Roos, H.: Independence of local algebras in quantum field theory. Commun. Math. Phys.16, 238 (1970)Google Scholar
  8. 8.
    Buchholz, D.: Product states for local algebras. Commun. Math. Phys.36, 287 (1974)Google Scholar
  9. 9.
    Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. math.73, 493 (1984)Google Scholar
  10. 10.
    Summers, S.J.: Normal product states for fermions and twisted duality for CCR-and CAR-type algebras with application to the Yukawa2 quantum field model. Commun. Math. Phys.86, 111 (1982)Google Scholar
  11. 11.
    D'Antoni, C., Longo, R.: Interpolation by typeI factors and the flip automorphism. J. Funct. Anal.51, 361 (1983)Google Scholar
  12. 12.
    Glimm, J., Jaffe, A.: The energy momentum spectrum and vacuum expectation values in quantum field theory. II. Commun. Math. Phys.22, 1 (1971)Google Scholar
  13. 13.
    Doplicher, S.: Local aspects of superselection rules. Commun. Math. Phys.85, 73 (1982)Google Scholar
  14. 14.
    Doplicher, S., Longo, R.: Local aspects of superselection rules. II. Commun. Math. Phys.88, 399 (1985)Google Scholar
  15. 15.
    Buchholz, D., Doplicher, S., Longo, R.: On Noethers theorem in quantum field theory (to appear in Ann. Phys.)Google Scholar
  16. 16.
    Driessler, W.: Duality and absence of locally generated superselection sectors for CCR-type algebras. Commun. Math. Phys.70, 213 (1979)Google Scholar
  17. 17.
    Fröhlich, J.: Quantum theory of non-linear invariant wave (field) equations or: superselection sectors in constructive quantum field theory. In: Invariant wave equations. Lecture Notes in Physics, Vol. 73. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  18. 18.
    Buchholz, D.: Work in progressGoogle Scholar
  19. 19.
    Buchholz, D., Junglas, P.: Local properties of equilibrium states and the particle spectrum in quantum field theory. Lett. Math. Phys.11, 51 (1986)Google Scholar
  20. 20.
    Knight, J.M.: Strict localization in quantum field theory. J. Math. Phys.2, 459 (1961)Google Scholar
  21. 21.
    Olesen, P.: On the exponentially increasing level density in string models and the tachyon singularity. Nucl. Phys. B267, 539 (1986)Google Scholar
  22. 22.
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc.16, 1 (1955)Google Scholar
  23. 23.
    Gross, D.J., Pisarski, R.D., Yaffe, L.G.: QCD and instantons at finite temperature. Rev. Mod. Phys.53, 43 (1981)Google Scholar
  24. 24.
    Licht, A.L.: Strict localization. J. Math. Phys.4, 1443 (1963)Google Scholar
  25. 25.
    Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics. I. Commun. Math. Phys.23, 199 (1971)Google Scholar
  26. 26.
    Sakai, S.:C*-algebras andW*-algebras. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  27. 27.
    Borchers, H.J.: A remark on a theorem of B. Misra. Commun. Math. Phys.4, 315 (1967)Google Scholar
  28. 28.
    Borchers, H.J.: Energy and momentum as observables in quantum field theory. Commun. Math. Phys.2, 49 (1966)Google Scholar
  29. 29.
    Borchers, H.J.: On the vacuum state in quantum field theory. Commun. Math. Phys.1, 57 (1965)Google Scholar
  30. 30.
    Pommerenke, Ch.: Private communicationGoogle Scholar
  31. 31.
    Buchholz, D., D'Antoni, C., Fredenhagen, K.: The universal structure of local algebras in quantum field theory (to appear)Google Scholar
  32. 32.
    Araki, H.: Von Neumann algebras of observables for free scalar field. J. Math. Phys.5, 1 (1964)Google Scholar
  33. 33.
    Wightman, A.S.: Recent achievements of axiomatic field theory. In: Trieste lecture notes 1962. Vienna: IAEA 1963Google Scholar
  34. 34.
    Schroer, B.: Infrateilchen in der Quantenfeldtheorie. Fortschr. Phys.11, 1 (1963)Google Scholar
  35. 35.
    Kosaki, H.: On the continuity of the map ϕ →|ϕ| from the predual of aW*-algebra. J. Funct. Anal.59, 123 (1984)Google Scholar
  36. 36.
    Longo, R.: Private communicationGoogle Scholar
  37. 37.
    Buchholz, D., Jacobi, P.: On the nuclearity condition for massless fields (to be published)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Detlev Buchholz
    • 1
  • Eyvind H. Wichmann
    • 2
  1. 1.II. Institut für Theoretische Physik der Universität HamburgHamburg 50Germany
  2. 2.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations