Advertisement

Journal of Mammalian Evolution

, Volume 3, Issue 2, pp 121–161 | Cite as

Dispersal, vicariance, and the Late Cretaceous to early tertiary land mammal biogeography from South America to Australia

  • Michael O. Woodburne
  • Judd A. Case
Article

Abstract

A review of paleontological, phyletic, geophysical, and climatic evidence leads to a new scenario of land mammal dispersal among South America, Antarctica, and Australia in the Late Cretaceous to early Tertiary epochs. New fossil land vertebrate material has been recovered from all three continents in recent years. As regards Gondwana, the present evidence suggests that monotreme mammals and ratite birds are of Mesozoic origin, based on both geochronological and phyletic grounds. The occurrence of monotremes in the early Paleocene (ca. 62 Ma) faunas of Patagonia and of ratites in late Eocene (ca. 41-37 m.y.) faunas of Seymour Island (Antarctic Peninsula) probably is an artifact of a much older and widespread Gondwana distribution prior to the Late Cretaceous Epoch. Except for South American microbiotheres being australidelphians, marsupial faunas of South America and Australia still are fundamentally disjunct. New material from Seymour Island (Microbiotheriidae) indicates the presence there of a derived taxon that resides in a group that is the sister taxon of most Australian marsupials. There is no compelling evidence that dispersal between Antarctica and Australia was as recent as ca. 41 Ma or later. In fact, the derived marsupial and placental land mammal fauna of Seymour Island shows its greatest affinity with Patagonian forms of Casamayoran age (ca. 51–54 m.y.). This suggests an earlier dispersal of more plesiomorphic marsupials from Patagonia to Australia via Antarctica, and vicariant disjunction subsequently. This is consistent with geophysical evidence that the South Tasman Rise was submerged by 64 Ma and with geological evidence that a shallow water marine barrier was present from then onward. The scenario above is consistent with molecular evidence suggesting that australidelphian bandicoots, dasyurids, and diprotodontians were distinct and present in Australia at least as early as the 63-Ma-old australidelphian microbiotheres and the ancient but not basal australidelphian,Andinodelphys, in the Tiupampa Fauna of Bolivia. Land mammal dispersal to Australia typically has been considered to be at a low level of probability (e.g., by sweepstakes dispersal). This study suggests that the marsupial colonizers of Australia included already recognizable members of the Peramelina, Dasyuromorphia, and Diprotodontia, at least, and entered via a filter route rather than by a sweepstakes dispersal.

Key Words

Late Cretaceous Gondwana marsupial dispersal vicariance multidisciplinary data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aplin, K. P., and Archer, M. (1987). Recent advances in marsupial systematics with a new syncretic classification. In:Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. xv-lxii, Surrey Beatty and Sons, Chipping Norton, NSW.Google Scholar
  2. Archer, M. (1976). The basicranial region of marsupicarnivores (Marsupialia), inter-relationships of carnivorous marsupials, and affinities of the insectivorous marsupial peramelids.Zool. J. Linn. Soc. 59: 217–322.Google Scholar
  3. Archer, M., Godthelp, H., and Hand, S. J. (1993). Early Eocene marsupial from Australia.Kaupia 3: 193–200.Google Scholar
  4. Askin, R. A. (1990). Campanian to Paleocene spore and pollen assemblages of Seymour Island, Antarctica.REv. Paleobot. Palynol. 65: 105–133.Google Scholar
  5. Askin, R. A. (1992). Late Cretaceous-early Tertiary Antarctic outcrop evidence for past vegetation and climates. The Antarctic Paleoenvironment: A perspective on Global Change.Am. Geophys. Union Antarctic Res. Ser. 56: 61–73.Google Scholar
  6. Askin, R. A. (1995). Eocene terrestrial palynology of Seymour Island, Antarctica.VII Int. Symp. Antarctic Earth Sci. Abstr., p. 14, Siena, Italy.Google Scholar
  7. Askin, R. A., Elliot, D. H., Stilwell, J. D., and Zinsmeister, W. J. (1991). Stratigraphy and paleontology of Campanian and Eocene sediments, Cockburn Island, Antarctic Peninsula.J. South Am. Earth Sci. 4: 99–117.Google Scholar
  8. Barker, P. F., and Burrell, J. (1982). The influence upon Southern Ocean circulation, sedimentation, and climate of the opening of Drake Passage. In:Antarctic Geoscience, C. Craddock, ed., pp. 377–385, University of Wisconsin Press, Madison.Google Scholar
  9. Barrera, E., and Huber, B. T. (1993). Eocene to Oligocene Oceanography and temperatures in the Antarctic Indian Ocean.Am. Geophys. Union Antarctic Res. Ser. 60: 49–65.Google Scholar
  10. Baverstock, P. R., Krieg, M., and Birrell, J. K. (1990). Evolutionary relationships of Australian marsupials as assessed by albumin immunology.Aust. J. Zool 37: 273–287.Google Scholar
  11. Berggren, W. A., Kent, D. V., Swisher, C. C., III, and Aubry, M.-P. (1995). A revised Cenozoic geochronology and biostratigraphy. In:Geochronology, Time Scales and Stratigraphic Correlation: Framework for an Historical Geology, W. A. Berggren, D. V. Kent, M.-P. Aubry, and J. Hardenbol, eds., pp. 129–212,Soc. Strat. Geol. Spec. Publ. 54, Tulsa, OK.Google Scholar
  12. Birkenmajer, K. (1988). Tertiary glacial and interglacial deposits, South Shetland Islands, Antarctica: Geochronology versus biostratigraphy (a progress report).Bull. Polish Acad. Sci. Earth Sci. 36: 133–144.Google Scholar
  13. Bonaparte, J. F. (1990). New late Cretaceous mammals from the Los Alamitos Formation, northern Patagonia.Natl. Geogr. Res. 6: 63–93.Google Scholar
  14. Bond, M., Pascual, R., Reguero, M. A., Santillana, S. N., and Marenssi, S. A. (1990). Los primeros ungulados extinguidos sudamericanos de la Antártida.Ameghiniana 26: 240.Google Scholar
  15. Bradshaw, J. D., Weaver, S. D., Pankhurst, R. J., and Storey, B. C. (1995). New Zealand superterranes recognized in Marie Byrd Land and Thurston Island.VII Int. Symp. Antarctica Earth Sci. Abstr., p. 60. Siena, Italy.Google Scholar
  16. Callen, R. J., Dulhunty, J. D., Lange, R. T., Plane, M., Tedford, R. H., Wells, R. T., and Williams, D. L. G. (1986). The Lake Eyre Basin-Cainozoic sediments, fossil vertebrates and plants, landforms, silcretes and climatic implications. Australasian Sedimentologists Field Guide Series No. 4,Geol. Soc. Aust. 1–76.Google Scholar
  17. Callen, R. J., and Tedford, R. H. (1976). New late Cainozic rock units and depositional environments, Lake Frome area, South Australia.Trans. Roy. Soc. South Aust. 100: 125–168.Google Scholar
  18. Cande, S. C., and Kent, D. V. (1992). A new geomagnetic polarity time scale for Late Cretaceous and Cenozoic.J. Geophys. Res. 97(B10): 13,917–13,951.Google Scholar
  19. Carlini, A. A., Pascual, R., Reguero, M. A., Scillato-Yané, G. J., Tonni, E. P., and Vizcaino, S. F. (1990). The first Paleogene land placental mammal from Antarctica: Its paleoclimatic and paleobiogeographical bearings.IV Int. Congr. Syst. Evol. Biol. Abstr. Google Scholar
  20. Case, J. A. (1988). Paleogene floras from Seymour Island, Antarctic Peninsula. In:Geology and Paleontology of Seymour Island, Antarctic Peninsula, R. M. Feldmann and M. O. Woodburne, eds., pp. 523–530, Geol. Soc. Am. Mem. 169, Boulder, CO.Google Scholar
  21. Case, J. A. (1989). Antarctica: The effect of high latitude heterochroneity on the origin of the Australian marsupials. In:Origins and Evolution of the Antarctic Biota, J. A. Crame, ed., pp. 217–226, Geol. Soc. Spec. Publ. 47, London.Google Scholar
  22. Case, J. A. (1992a). Paleocene gap in the fossil record of North America didelphids.J. Vert. Paleontol. 12 (Suppl. no 3): 22A.Google Scholar
  23. Case, J. A. (1992b). Evidence from fossil vertebrates for a rich Eocene Antarctic marine environment. The Antarctic Paleoenvironment: A perspective on Global Change.Am Geophys. Union Antarctic Res. Ser. 56: 119–130.Google Scholar
  24. Case, J. A., Woodburne, M. O., and Chaney, D. S. (1987). A gigantic phororhacoid(?) bird from Antarctica.J. Paleontol. 61: 1280–1284.Google Scholar
  25. Case, J. A., Woodburne, M. O., and Chaney, D. S. (1988). A new genus and species of polydolopid marsupial from the La Meseta Formation, late Eocene, Seymour Island, Antarctic Peninsula. In: Geology and Paleontology of Seymour Island, Antarctic Peninsula, R. M. Feldmann, and M. O. Woodburne, eds., pp. 505–521,Geol. Soc. Am. Mem. 169, Boulder, CO.Google Scholar
  26. Cifelli, R. L. (1993a). Theria of metatherian-eutherian grade and the origin of marsupials. In:Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 205–215, Springer-Verlag, New York.Google Scholar
  27. Cifelli, R. L. (1993b). Early Cretaceous mammal from North America and the evolution of marsupial dental characters.Proc. Natl. Acad. Sci. USA 90: 9413–9416.PubMedGoogle Scholar
  28. Clemens, W. A., and Lillegraven, J. A. (1986). New Late Cretaceous North American advanced therian mammals that fit neither the marsupial nor eutherian molds.Contrib. Geol. Univ. Wyo. Spec. Paper 3: 55–85.Google Scholar
  29. Dalziel, I. W. D., and Elliot, D. H. (1982). West Antarctica: Problem child of Gondwanaland.Tectonics 1: 3–19.Google Scholar
  30. Diester-Haas, L., and Zahn, R. (1996). Eocene-Oligocene transition in the southern ocean: history of water mass circulation and biological productivity.Geology 24: 163–166.Google Scholar
  31. Ehrmann, W. U., and Mackensen, A. (1992). Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time.Palaeogeogr. Palaeoclimatol. Palaeoecol. 9: 85–112.Google Scholar
  32. Flynn, J. J., and Swisher, C. C., III (1995). Cenozoic South American Land Mammal Ages: correlation to global geochronologies. In:Geochronology, Time Scales and Stratigraphic Correlation: Framework for an Historical Geology, W. A. Berggren, D. V. Kent, M.-P. Aubry, and J. Hardenbol, eds., pp. 317–334,Soc. Strat. Geol. Spec. Publ. 54, Tulsa, OK.Google Scholar
  33. Gayet, M., Marshall, L. G., and Sempere, T. (1991). The Mesozoic and Paleocene vertebrates of Bolivia and their stratigraphic context: A review.Revista Tec. YPFB Santa Cruz 12: 393–433.Google Scholar
  34. Godthelp, H., Archer, M., Cifelli, R., Hand, S. J., and Gilkeson, C. F. (1992). Earliest known Australian Tertiary mammal fauna.Nature 256: 514–516.Google Scholar
  35. Goin, F. J., and Carlini, A. A. (1995). An early Tertiary microbiotheriid marsupial from Antarctica.J. Vert. Paleontol. 15: 205–207.Google Scholar
  36. Goin, F. J., and Reguero, M. A. (1993). Un “enigmático insectívoro” de Eoceno de Antártida.Ameghiniana 30: 108.Google Scholar
  37. Goin, F., Reguero, M. A., and Vizcaino, S. F. (1994). Novedosos hallazgos de “comadrejas” (Marsupialia) del Eoceno Medio de Antartida. III Jornadas Invest. Antartidas. Buenos Aires 9 (abstract).Google Scholar
  38. Goin, F. J., Vizcaino, S. F., and Reguero, M. A. (1995). Las “comadrejas” (Mammalia, Marsupialia) del Eoceno de Antartida.XII Jornadas Argentinas Paleontol. Vertebradoas Tucumán 11 (abstract).Google Scholar
  39. Greenwood, D. R. (1994). Palaeobotanical evidence for Tertiary climates. In:History of the Australian Vegetation: Cretaceous to Recent, R. S. Hill (ed.), pp. 44–59. Cambridge University Press, Cambridge.Google Scholar
  40. Groves, C. P., and Flannery, T. (1990). Revision of the families and genera of bandicoots. In:Bandicoots and Bilbies, J. H. Seebeck, R. L. Brown, R. L. Wallis, and C. M. Kemper, eds., pp. 1–11. Surrey Beatty and Sons, Sydney.Google Scholar
  41. Grunow, A. (1992). Creation and destruction of Weddell Sea floor in the Jurassic.Geology 21: 647–650.Google Scholar
  42. Harding, R. L., and Aplin, K. P. (1990). Phylogenetic affinities of the koala (Phascolarctidae, Marsupialia): A reassessment of the spermatozoal evidence. In:Biology of the Koala, A. K. Lee, K. A. Handasyde, and G. D. Sanson, eds., pp. 1–31, Surrey Beatty & Sons, Sydney.Google Scholar
  43. Hershkovitz, P. (1982). The staggered marsupial lower third incisor (I3).Géobios. Mem. Spec 6: 191–200.Google Scholar
  44. Hershkovitz, P. (1992). Ankle bones: The Chilean opossumDromiciops gliroides Thomas, and marsupial phylogeny.Bonn. Zool. Beitr. 43: 181–213.Google Scholar
  45. Hershkovitz, P. (1995). The staggered marsupial third lower incisor: Hallmark of cohort Didelphimorphia, and description of a new genus and species with staggered i3 from the Albian (Lower Cretaceous) of Texas.Bonn. Zool. Beitr. 45: 153–169.Google Scholar
  46. Hooker, J. J. (1992). An additional record of a placental mammal (Order Astrapotheria) from the Eocene of West Antarctica.Antarctic Sci. 4: 107–108.Google Scholar
  47. Hughes, R. L. (1965). Comparative morphology of spermatozoa from five marsupial families.Aust. J. Zool. 13: 533–543.Google Scholar
  48. Hume, I. D. (1982).Digestive Physiology and Nutrition of Marsupials. Cambridge University Press, New York.Google Scholar
  49. Jones, F. W. (1923–1925).The Mammals of South Australia, Government Printer, Adelaide.Google Scholar
  50. Kirsch, J. A. W. (1968). Prodromus of the comparative serology of Marsupialia.Nature 217: 418–420.PubMedGoogle Scholar
  51. Kirsch, J. A. W. (1977). The comparative serology of the Marsupialia, and a classification of the marsupials.Aust. J. Zool., Suppl. Ser. 51: 1–152.Google Scholar
  52. Kirsch, J. A. W., and Archer, M. (1982). Polythetic cladistics, or, when parsimony's not enough: the relationships of carnivorous marsupials. In:Carnivorous Marsupials M. Archer, ed., Royal Zoological Society of New South Wales, pp. 595–619. Surrey Beatty & Sons, Chipping Norton, Australia.Google Scholar
  53. Kirsch, J. A. W., and Springer, M. S. (1993). Timing of the molecular evolution of New Guinean marsupials.Sci. New Guinea 19: 147–156.Google Scholar
  54. Kirsch, J. A. W., Springer, M. S., Krajewski, C., Archer, M., Aplin, K., and Dickerman, A. W. (1990). DNA/DNA hybridization studies of the carnivorous marsupials. I. The intergeneric relationships of bandicoots (Marsupialia: Perameloidea).J. Mol. Evol. 30: 434–448.PubMedGoogle Scholar
  55. Kirsch, J. A. W., Dickerman, W. W., Reig, O. A., and Springer, M. S. (1991). DNA hybridization evidence for the Australian affinity of the American marsupialDromiciops australis.Proc. Natl. Acad. Sci. USA 88: 10465–10469.PubMedGoogle Scholar
  56. Koenigswald, W., v. (1995). Enamel microstructure: Marsupialia vs. placentalia. In: Radlanski, R. J., and Renz, H. (eds.),Proc. 10th Int. Symp. Dent. Morphol., pp. 222–229, Marketing Service, Berlin.Google Scholar
  57. Koenigswald, W., v. (1996). Two different strategies in enamel differentiation: Marsupialia vs. Placentalia. In Teaford, M., Ferguson, X., and Smith, M., eds.,Development, Function and Evolution of Teeth, Cambridge University Press, Cambridge (in press).Google Scholar
  58. Krajewski, C., Driskell, A. C., Baverstock, P. R., and Braun, M. J. (1992). Phylogenetic relationships of the thylacine (Mammalia: Thylacinidae) among dasyuroid marsupials: Evidence from cytochrome b DNA sequences.Proc. Roy. Soc. Lond. B 250: 19–27.Google Scholar
  59. Krause, D. E., and Bonaparte, J. F. (1990). The Gondwanatheria, a new suborder of Multituberculata from South America.J. Vert. Paleontol. 10 (Suppl. 3): 31A.Google Scholar
  60. Lawver, L. A., Gahagan, L. M., and Coffin, F. M. (1992). The development of paleoseaways around Antarctica.Am. Geophys. Union Antarctic Res. Ser. 65: 7–30.Google Scholar
  61. Lazarus, D. K., and Caulet, J.-P. (1993). Cenozoic southern Ocean reconstructions from sedimentologic, radiolarian, and other microfossil data.Am. Geophys. Union Antarctic Res. Ser. 60: 145–174.Google Scholar
  62. LeMasurier, W. A., and Landis, C. A. (1995). Environment of greakup and timing of mantle plume activity record by the West Antarctic erosion surface.Int. Symp. Antarctic Earth Sci. Abstr., p. 242, Siena, Italy.Google Scholar
  63. Lowenstein, J. M., Sarich, V. M., and Richardson, B. J. (1981). Albumin systematics of the extinct mamoth and Tasmanian wolf.Nature 291: 409–411.PubMedGoogle Scholar
  64. Luckett, W. P. (1993). An ontogenetic assessment of dental homologies in therian mammals. In:Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Eutherians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 182–204, Springer-Verlag, New York.Google Scholar
  65. Luckett, W. P. (1994). Suprafamilial relationships within Marsupialia: Resolution and discordance from multidisciplinary data.J. Mammal. Evol. 2: 225–283.Google Scholar
  66. MacPhail, M. K., Alley, N. F., Truswell, E. M., and Suiter, I. R. K. (1994). Early Tertiary vegetation: Evidence from spores and pollen. In:History of the Australian Vegetation: Cretaceous to Recent, R. S. Hill, ed., pp. 189–261. Cambridge University Press, Cambridge.Google Scholar
  67. Marenssi, S. A., Reguero, M. A., Santillana, S. N., and Vizcaino, S. F. (1994). Eocene land mammals from Seymour Island, Antarctica: Paleobiogeographical implications.Antarctic Sci. 6: 3–15.Google Scholar
  68. Marshall, L. G. (1972). Evolution of the peramelid tarsus.Proc. Roy. Soc. Vic. 85: 51–60.Google Scholar
  69. Marshall, L. G. (1987). Systematics of Itaboraian (Middle Paleocene) age “opossum-like” marsupials from the limestone quarry at São José de Itaboraí, Brazil. In:Possums and Opossums: Studies in Evolution, M. Archer (ed.), pp. 91–160. Surrey Beatty and Sons Chipping Norton, NSW.Google Scholar
  70. Marshall, L. G., and Muizon, C., de (1988). The dawn of the age of mammals in South America.Natl. Geog. Res. 4: 23–35.Google Scholar
  71. Marshall, L. G., and Muizon, C., de (1992). Atlas photographique (MEB) des Metatheria et quelques Eutheria du Paléocène infèrieur de la formation Santa Lucia à Tiupampa (Bolivie).Bull. Mus. Natl. Hist. Nat. Paris (4th ser.)14: 63–91.Google Scholar
  72. Marshall, L. G., Muizon, C., de, and Sigé, B. (1983). Late Cretaceous mammals from Bolivia.Gébios 16: 739–745.Google Scholar
  73. Marshall, L. G., Case, J. A., and Woodburne, M. O. (1990). Phylogenetic relationships of the families of marsupials. In:Current Mammalogy, Vol. 2, H. Genoways, ed., pp. 433–506, Plenum Press, New York.Google Scholar
  74. Marshall, L. G., and Muizon, C., de, (1995). Part II. The skull. In:Pucadelphys andinus (Marsupialia, Mammalia) from the early Paleocene of Bolivia, C. de Muizon, ed.Mem. Mus. Natl. Hist. Nat. Paris 165: 21–90.Google Scholar
  75. Marshall, L. G., Sempere, T., and Butler, R. F. (1996). Chronostratigraphy of the mammal-bearing Paleocene of South America.J. South Am. Earth Sci. (in press).Google Scholar
  76. Martin, H. A. (1989). Vegetation and climate of the late Cainozoic in the Murry Basin and their bearing on the salinity problem.Bureau Min. Resources J. Aust. Geol. Geophys. 11: 255–279.Google Scholar
  77. Maxon, L. R., Sarich, V. M., and Wilson, A. C. (1975). Continental drift and the use of albumin as an evolutionary clock.Nature 255: 397–400.Google Scholar
  78. McGowran, B. (1991). Maestrichtian and early Cainozoic, southern Australia: Planktonic foraminiferal biostratigraphy. In:The Cainozoic in Australia: A Re-appraisal of the Evidence, M. A. J. Williams, P. de Decker, and A. P. Kershaw, eds.,Geol. Soc. Aust. Spec. Publ. 18: 79–98.Google Scholar
  79. Mohr, B. A. R. (1990). Eocene and Oligocene sporomorphs and dinoflagellate cysts from Leg 113 drill sites, Weddell Sea, Antarctica. In:Proc. ODP Sci. Res., P. G. Barker, and J. P. Kennett, eds., Vol. 113, pp. 595–612.Google Scholar
  80. Muirhead, J., and Filan, S. I. (1995).Yarala burchfieldi, a plesiomorphic bandicoot (Marsupialia, Peramelemorphia) from Oligo-Miocene deposits of Riversleigh, northwestern Queensland.J. Paleontol. 69: 127–134.Google Scholar
  81. Muizon, C., de (1992). La fauna de mamiferos de Tiupampa (Paleoceno inferior, Formacion Santa Lucia), Bolivia. In:Fosiles y Facies de Bolivia—Vol. 1. Vertebrados, R. Suarez-Soruco, ed., pp. 575–624, Revista Technica de YPFB, Santa Cruz, Bolivia.Google Scholar
  82. Muizon, C., de (1994). A new carnivorous marsupial from the Palaeocene of Bolivia and the problem of marsupial monophyly.Nature 370: 208–211.Google Scholar
  83. Munson, C. J. (1992). Postcranial descriptions ofIlaria andNgapakaldia (Vombatiformes, Marsupialia) and the phylogeny of the vombatiforms based on postcranial morphology.Univ. Calif. Publ. Zool. 125: 1–99.Google Scholar
  84. Norrish, K., and Pickering, J. G. (1983). Clay minerals. In:Soils, an Australian Viewpoint, pp. 281–308, CSIRO/Academic Press, Melbourne.Google Scholar
  85. Pascual, R., Archer, M., Ortiz-Jaureguizar, E., Prado, J. L., Godthelp, H., and Hand, S. J. (1992). First discovery of monotremes in South America.Nature 356: 704–706.Google Scholar
  86. Pirlot, P. (1981). A quantitative approach to the marsupial brain in an eco-ethological perspective.Rev. Can. Biol. 2: 229–250.Google Scholar
  87. Porrenga, D. A. (1968). Non-marine glauconitic illite in the lower Oligocene of Aardedrug, Belgium.Clay Mineral. 7: 421–430.Google Scholar
  88. Prentice, M. L., and Matthews, R. K. (1988). Cenozoic ice-volume history: Development of a composite oxygen isotope record.Geology 16: 963–966.Google Scholar
  89. Prothero, D. R., and Swisher, C. C., III (1992). Magnetostratigraphy and geochronology of the terrestrial Eocene-Oligocene transition in North America. In:Eocene-Oligocene Climatic and Biotic Evolution, D. R. Prothero and W. A. Berggren, eds., pp. 46–73, Princeton University Press, Princeton, NJ.Google Scholar
  90. Quilty, P. G. (1994). The background: 144 million years of Australian paleoclimate and palaeogeography. In:History of the Australian Vegetation: Cretaceous to Recent, R. S. Hill (ed.), pp. 14–43, Cambridge University Press, Cambridge.Google Scholar
  91. Retief, J. D., Krajewski, C., Westerman, M., Winkfein, R. H., and Dixon, G. H. (1995). Molecular phylogeny and evolution of marsupial protamine P1 genes.Proc. Roy. Soc. London (B) 259: 7–14.Google Scholar
  92. Ride, W. D. L. (1964). A review of Australian fossil marsupials.J. Proc. Roy. Soc. West. Aust. 47: 97–131.Google Scholar
  93. Sadler, P. M. (1988). Geometry and stratification of uppermost Cretaceous and Paleogene units on Seymour Island, northern Antarctic Peninsula. In:Geology and Paleontology of Seymour Island, Antarctic Peninsula, R. M. Feldmann and M. O. Woodburne (eds.), pp. 303–320.Geol. Soc. Am. Mem. 169, Boulder, CO.Google Scholar
  94. Sarich, V., Lowenstein, J. M., and Richardson, B. J. (1982). Phylogenetic relationships ofThylacinus cynocephalus, Marsupialia, as reflected in comparative serology. In:Carnivorous Marsupials, M. Archer, ed., pp. 707–709, Royal Zoological Society of New South Wales, Sydney.Google Scholar
  95. Scotese, C. R., and Denham, C. R. (1988).User's Manual for Terra Mobilis: Plate Teconics for the Macintosh.Google Scholar
  96. Shen, Y. (1995). A paleoisthmus between southern South America and Antarctic Peninsula during Late Cretaceous and early Tertiary.Int. Symp. Antarctic Earth Sci. Abstr., 345, Siena, Italy.Google Scholar
  97. Simpson, G. G. (1953).Evolution and Geography, Condon Lectures, Oregon State System of Higher Education.Google Scholar
  98. Smith, C. H. (1995). Mid-crustal conditions and processes during Cretaceous separation of Marie Byrd Land and New Zealand: Evidence from Marie Byrd Land.Int. Symp. Antarctic Earth Sci. Abstr., 355, Siena, Italy.Google Scholar
  99. Springer, M. S., and Kirsch, J. A. W. (1991). DNA hybridization, the compression effect, and the radiation of diprotodontian marsupials.Syst. Zool. 40: 131–151.Google Scholar
  100. Springer, M. S., Westerman, M., and Kirsch, J. A. W. (1994). Relationships among orders and families of marsupials based on 12S ribosomal DNA sequences and the timing of the marsupial radiation.J. Mammal. Evol. 2: 85–115.Google Scholar
  101. Springer, M. S., Kirsch, J. A. W., and Case, J. A. (1996). The chronicle of marsupial evolution. In:Molecular Evolution and Adaptive Radiation, T. J. Givnish, and K. J. Sytsma (eds.), Cambridge University Press, Cambridge (in press).Google Scholar
  102. Storey, B. C. (1995). Microplates and mantle plumes in Antarctica.Int. Symp. Antarctic Earth Sci. Abstr., 361, Siena, Italy.Google Scholar
  103. Strait, S. G. (1993). Molar morphology and food texture among small-bodied insectivorous mammals.J. Mammal. 74: 391.Google Scholar
  104. Stump, E., and Fitzgerald, P. G. (1992). Episodic uplift of the Transantarctic Mountains.Geology 20: 161–164.Google Scholar
  105. Szalay, F. S. (1982a). A new appraisal of marsupial phylogeny and classification. In:Carnivorous Marsupials, M. Archer, ed., pp. 621–640. Royal Zoological Society of New South Wales, Sydney.Google Scholar
  106. Szalay, F. S. (1982b). Phylogenetic relationships of the marsupials.Géobios Mem. Spec. 6: 177–190.Google Scholar
  107. Szalay, F. S. (1994).Evolutionary History of the Marsupials and an Analysis of Osteological Characters, Cambridge University Press, New York.Google Scholar
  108. Tambussi, C., Noriega, J., Gaździcki, A., Tatur, A., Reguero, M. A., and Vizcaino, S. F. (1994a). The first occurrence of a ratite bird in the Paleogene of Antarctica.XXI Polar Symp., pp. 45–48, Warsaw.Google Scholar
  109. Tambussi, C., Noriega, J., Gaździcki, A., Tatur, A., Reguero, M. A., and Vizcaino, S. F. (1994b). Ratite bird from the Paleogene La Meseta Formation, Seymour Island, Antarctica.Polish Polar Res. 15: 15–20.Google Scholar
  110. Tedford, R. H., Skinner, M. F., Fields, R. W., Rensberger, J. M., Whistler, D. P., Galusha, T., Taylor, B. E., Macdonald, J. R., and Webb, S. D. (1987). Faunal succession and biochronology of the Arikareean through Hemphillian interval (late Oligocene through earliest Pliocene epochs). In:Cenozoic Mammals of North America: Geochronology and Biostratigraphy, M. O. Woodburne, ed., pp. 153–210, University of California Press, Berkeley.Google Scholar
  111. Van Valen, L. M. (1988). Paleocene dinosaurs or Cretaceous ungulates in South America.Evol. Monogr. 10: 1–79.Google Scholar
  112. Veevers, J. J. (1991). Phanerozoic Australia in the changing configuration of Proto-Pangea through Gondwanaland and Pangea to the present dispersed continents.Aust. Syst. Bot. 4: 1–11.Google Scholar
  113. Veevers, J. J., and Li, Z. X. (1991). Review of sea floor spreading around Australia. II. Marine magnetic anomaly modeling.Aust. J. Earth Sci. 38: 391–408.Google Scholar
  114. Veevers, J. J., Powell, C. McA., and Roots, S. R. (1991). Review of sea floor spreading around Australia. I. Synthesis of the patterns of spreading.Aust. J. Earth Sci. 38: 373–389.Google Scholar
  115. Vizcaino, S. F., and Scillato-Yané, G. J. (1995). An Eocene tardigrade (Mammalia, Xenarthra) from Seymour Island, West Antarctica.Antarctic Sci. 7: 407–408.Google Scholar
  116. Vizcaino, S. F., Carlini, A. A., and Reguero, M. A. (1988). Primer registro de un marsupial Didelphimorphia en Antártida. Su implicancia biogeográfica,5th Jornadas Argent. Paleont. Vert., Abstr., 30–31. Universidad de la Plata, La Plata.Google Scholar
  117. Vizcaino, S. F., Reguero, M. A., Marenssi, S. A., and Santillana, S. N. (1994). The fossil record of land mammals from Antarctica.XXI Polar Symp., 49–54, Warsaw.Google Scholar
  118. Vizcaino, S. F., Bond M., Reguero, M. A., and Pascual, R. (1996). The youngest record of fossil land mammals from Antarctica: its significance on the evolution of the terrestrial environment of the Antarctic Peninsula during the late Eocene.J. Paleontol. (in press).Google Scholar
  119. Wilford, G. E., and Brown, P. J. (1994). Maps of late Mesozoic-Cenozoic Gondwana break-up: some paleogeographical implications. In:History of the Australian Vegetation: Cretaceous to Recent, R. S. Hill (ed.), pp. 5–13, Cambridge University Press, Cambridge.Google Scholar
  120. Woodburne, M. O., and Zinsmeister, W. J. (1982). Fossil land mammal from Antarctica.Science 218: 284–286.Google Scholar
  121. Woodburne, M. O., and Zinsmeister, W. J. (1984). The first land mammal from Antarctica and its biogeographic implications.J. Paleontol. 58: 913–948.Google Scholar
  122. Woodburne, M. O., Tedford, R. H., Archer, M., Turnbull, W. D., Plane, M. D., and Lundelius, E. L., Jr. (1985). Biochronology of the continental mammal record of Australia and New Guinea.Spec. Publ. South Aust. Dept. Mines Energy 5: 347–364.Google Scholar
  123. Woodburne, M. O., MacFadden, B. J., Case, J. A., Springer, M., Pledge, N. S., Power, J. D., Woodburne, J. M., and Johnson, K. (1993). Land Mammal Biostratigraphy and Magnetostratigraphy of the Etadunna Formation (late Oligocene) of South Australia.J. Vert. Paleontol. 13: 132–164.Google Scholar
  124. Wrenn, J. H., and Hart, G. F. (1988). Paleogene dinoflagellate cyst biostratigraphy of Seymour Island, Antarctica. In:Geology and Paleontology of Seymour Island, Antarctic Peninsula, R. M. Feldmann and M. O. Woodburne, eds., pp. 321–447,Geol. Soc. Am. Mem. 169, Boulder, CO.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Michael O. Woodburne
    • 1
  • Judd A. Case
    • 2
  1. 1.Department of Earth SciencesUniversity of CaliforniaRiverside
  2. 2.Department of BiologySt. Mary's CollegeMoraga

Personalised recommendations