Journal of Mammalian Evolution

, Volume 3, Issue 1, pp 31–79 | Cite as

Reexamination of the morphological evidence for the cohort Epitheria (Mammalia, Eutheria)

  • Timothy J. Gaudin
  • John R. Wible
  • James A. Hopson
  • William D. Turnbull
Article

Abstract

Novacek and co-workers recognized a monophyletic clade Epitheria, comprising all eutherians except edentates and the extinct palaeoryctoids, on the basis of two synapomorphies: a stirrupshaped stapes and a foramen ovale enclosed within the alisphenoid. To evaluate this phylogenetic hypothesis, we reexamined the distributions of stapedial morphologies and positions of the foramen ovale across Recent and extinct mammals and nonmammalian cynodonts. The states and distributions of the stapes and forament ovale characters used by Novacek and coworkers were modified by recognizing two stapedial characters (one relating to shape of the crura, the other to the nature of the foramen) and a single, multistate foramen ovale character (within, behind, and lateral to the alisphenoid). The taxon-character matrix used by Novacek (1989, 1992b), substituting our amended stapedial and foramen ovale characters and adding several previously unscored extinct taxa and three new characters, was subjected to a series of PAUP manipulations. Identified among the most parsimonious trees were three major topologies for the base of Eutheria: (1) a polytomy including an Edentata/Ungulata clade, (2) a polytomy with Edentata and Ungulata as separate clades, and (3) Edentata and (when included) Palaeoryctoidea as the successive outgroups to a monophyletic Epitheria. We conclude that topology 2 best reflects the current state of knowledge. An edentate/ungulate clade is supported by three characters (from the mastoid region and subarcuate fossa); however, other morphological studies require modification of the distributions of these characters in xenarthrans and bassal ungulates, thereby eliminating support for this clade. In nearly all manipulations, obtaining a monophyletic Epitheria required that one or two steps be added to the most parsimonious trees. When a monophyletic Epitheria was obtained, it was supported by a triangular stapes and, in some trees, the reappearance of a stapedial artery (lost earlier at the level of Recent therians) and a transpromontorial internal carotid artery. In the most parsimonious trees, a foramen ovale within the alisphenoid was an equivocal synapomorphy of Recent therians or cutherians, and a stapes with strongly convex crura (our state closest to the stirrup-shaped state of Novacek and co-workers) appeared independently within various eutherian lineages. The reduction or loss of the stapedial foramen was identified as an independent event in monotremes and within marsupials and various eutherian lineages.

Key Words

Mammalia Epitheria phylogeny stapes foramen ovale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allin, E. F. (1975). Evolution of the mammalian middle ear.J. Morphol. 147: 403–438.PubMedGoogle Scholar
  2. Allin, E. F., and Hopson, J. A. (1992). Evolution of the auditory system in Synapsida (“mammal-like reptiles” and primitive mammals) as seen in the fossil record. In:The Evolutionary Biology of Hearing. D. B. Webster, R. R. Fay, and A. N. Popper, eds., pp. 587–614, Springer-Verlag, New York.Google Scholar
  3. Archer, M. (1976). The basicranial region of marsupicarnivores (Marsupialia), interrelationships of camivorous marsupials, and affinities of the insectivorous peramelids.Zool. J. Linn. Soc. 59: 217–322.Google Scholar
  4. Archer, M. (1982). A review of Miocene thylacinids (Thylacinidae, Marsupialia), the phylogenetic position of the Thylacinidae and the problem of apriorisms in character analysis. In:Carnivorous Marsupials, Vol. 2, M. Archer, ed., pp. 445–476, Royal Zoological Society of New South Wales, Mosman, Australia.Google Scholar
  5. Archibald, J. D. (1979). Oldest known eutherian stapes and a marsupial petrosal bone from the late Cretaceous of North America.Nature 281: 669–670.Google Scholar
  6. Benton, M. J. (ed.) (1988).The Phylogeny and Classification of Tetrapods, Vol. 2. Mammals, Claredon Press, Oxford.Google Scholar
  7. Bonaparte, J. F. (1986). A new and unusual Late Cretaceous mammal from Patagonia.J. Vert. Paleontol. 6: 264–270.Google Scholar
  8. Bonaparte, J. F. (1990). New Late Cretaceous mammals from the Los Alamitos Formation, northern Patagonia, and their significance.Natl. Geograph. Res. 6: 63–93.Google Scholar
  9. Bugge, J. (1979). Cephalic arterial pattern in New World edentates and Old World pangolins with special reference to their phylogenetic relationships and taxonomy.Acta Anat. 105: 37–46.PubMedGoogle Scholar
  10. Burda, H., Bruns, V., and Hickman, G. C. (1992). The ear in subterranean Insectivora and Rodentia in comparison with ground-dwelling representatives. I. Sound conducting system of middle ear.J. Morphol. 214: 49–61.PubMedGoogle Scholar
  11. Cifelli, R. L. (1982). The petrosal structure ofHyopsodus with respect to that of some other ungulates, and its phylogenetic implications.J. Paleontol. 56: 795–805.Google Scholar
  12. Crompton, A. W., and Luo, Z. (1993). Relationships of the Liassic mammalsSinoconodon, Morganucodon oehleri, andDinnetherium. In:Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenma,eds., pp. 30–44. Springer-Verlag, New York.Google Scholar
  13. Czelusniak, J., Goodman, M., Koop, B. F., Tagle, D. A., Shoshani, J., Braunitzer, G., Kleinschmidt, T. K., DeJong, W. W., and Matsuda, G. (1990). Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria. In:Current Mammalogy, Vol. 2, H. H. Genoways, ed., pp. 545–572. Plenum Press, New York.Google Scholar
  14. Dashzeveg, D., Novacek, M. J., Norell, M. A., Clark, J. M., Chiappe, L. M., Davidson, A., McKenna, M. C., Dingus, L., Swisher, C., and Perle, A. (1995). Extraordinary preservation in a new vertebrate assemblage from the Late Cretaceous of Mongolia.Nature 374: 446–449.Google Scholar
  15. DeBeer, G. R. (1937).The Development of the Vertebrate Skull, Clarendon Press, Oxford.Google Scholar
  16. DeBeer, G. R., and Fell, W. A. (1936). The development of the Monotremata. Part III. The development of the skull ofOrnithorhynchus.Trans. Zool. Soc. London 23: 1–43.Google Scholar
  17. DeJong, W. W., Zweers, A., Joysey, K. A., Gleaves, J. T., and Boulter, D. (1985). Protein sequence applied to xenarthran and pholidote phylogeny. In:The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas, G. G. Montgomery, ed., pp.65–76. Smithsonian Institution Press, Washington, DC.Google Scholar
  18. Ding, S.-Y (1987). A Paleocene edentate from Nanxiong Basin, Guangdong.Palaeontol. Sinica 173: 1–118.Google Scholar
  19. Doran, A. H. G. (1878). Morphology of mammalian ossicula auditús.Trans. Linn. Soc. London 2nd Ser. Zool. 1:391–497.Google Scholar
  20. Edgeworth, F. H. (1914). On the development and morphology of the mandibular and hyoid muscles of mammals.Q. J. Microsc. Sci. 59: 573–654.Google Scholar
  21. Edinger, T., and Kitts, D. B. (1954). The foramen ovale.Evolution 8: 389–404.Google Scholar
  22. Emry, R. J. (1970). A North American Oligocene pangolin and other additions to the Pholidota.Bull. Am. Mus. Nat. Hist. 142: 459–510.Google Scholar
  23. Engelman, G. (1985). The phylogeny of Xenarthra. In:The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas, G. G. Montgomery, ed., pp. 51–64, Smithsonian Institution Press, Washington, DC.Google Scholar
  24. Fischer, M. (1988). Zur Anatomie des Gehörorganes der Seekuh (Trichechus manatus L.), (Mammalia: Sirenia).Z. Säugetierk.53: 365–379.Google Scholar
  25. Fleischer, G. (1973). Studien am Skelett des Gehörorgans der Säugetiere, einschließlich des Menschen.Säugetierk Mitt. 40: 131–239.Google Scholar
  26. Gaudin, T. J. (1993).Phylogeny of the Tardigrada (Mammalia, Xenarthra) and the Evolution of Locomotor Function in the Xenarthra, Ph. D. dissertation. University of Chicago, Chicago.Google Scholar
  27. Gaudin, T. J. (1995). The ear region of edentates and the phylogeny of the Tardigrada (Xenarthra, Mammalia).J. Vert. Paleontol. 15 (in press).Google Scholar
  28. Gaupp, E. (1908). Zur Entwicklungsgeschichte und vergleichenden Morphologie des Schädels vonEchidna aculeata var.typica. Semon. Zool. Forschungsreisen Australien. Denkschr. med. naturwiss. Ges. Jena 6: 539–788.Google Scholar
  29. Gazin, C. L. (1965). A study of the early Tertiary condylarthran mammalMeniscotherium.Smithson. Misc. Coll. 149: 1–98.Google Scholar
  30. Gazin, C. L. (1968). A study of the Eocene condylarthran mammalHyopsodus.Smithson. Misc. Coll. 153: 1–90.Google Scholar
  31. Gillette, D. D., and Ray, C. E. (1981). Glyptodonts of North America.Smithsonian Contrib. Paleobio.40: 1–255.Google Scholar
  32. Glass, B. P. (1985). History of classification and nomenclature in Xenarthra (Edentata). In:The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas, G. G. Montgomery, ed., pp. 1–3, Smithsonian Institution Press, Washington, DC.Google Scholar
  33. Goodrich, E. S. (1915). The chorda tympani and middle ear in reptiles, birds, and mammals.Q. J. Microsc. Sci. 61: 137–160.Google Scholar
  34. Goodrich, E. S. (1930).Studies on the Structure and Development of Vertebrates. Macmillan, London.Google Scholar
  35. Gow, C. E. (1986a). The side wall of the braincase in cynodont therapids and a note on the homology of the mammalian promontorium.South Afr. J. Zool. 21: 136–148.Google Scholar
  36. Gow, G. E. (1986b). A new skull ofMegazostrodon (Mammalian, Triconodonta) from the Elliot Formation (Lower Jurassic) of southern Africa.Palaeontol. Afr. 26: 13–23.Google Scholar
  37. Griffiths, M. (1978).The Biology of the Monotremes, Academic Press, New York.Google Scholar
  38. Guth, C. (1961).La Région Temporale d'Édentés, Ph.D. dissertation, Université de Paris, Paris.Google Scholar
  39. Hahn, G. (1988). Die Ohr-region der Paulchoffatiidae (Multituberculata, Ober-Jura).Palaeovert. Montpellier 18: 155–185.Google Scholar
  40. Hahn, G., and Hahn, R. (1994). Nachweis des Septomaxillare beiPseudobolodon krebsi n. sp. (Multituberculata) aus dem Malm Portugals.Berliner geowiss. Abh. E 13: 9–29.Google Scholar
  41. Hill, J. E. (1935). The cranial foramina in rodents.J. Mammal. 16: 121–129.Google Scholar
  42. Hill, J. P., and Hill, W. C. O. (1955). The growth stages of the pouch-young of the native cat (Dasyurus viverrinus) together with observations on the anatomy of the new-born young.Trans. Zool. Soc. London 28: 349–452.Google Scholar
  43. Hirschfelder, H. (1937). Das Primordialcranium vonManatus latirostris.Z. Anat. Entwicklungsgesch. 106: 497–533.Google Scholar
  44. Hochstetter, F. (1896). Beiträge zur Anatomie und Entwickelungsgeschichte des Blutgefässystems der Monotremem.Semon. Zool. Forschungsreisen in Australien. Denkschr. med. naturwiss. Gesell. Jena 2: 189–243.Google Scholar
  45. Hoffstetter, R. (1958). Xenarthra. In:Traité de Paléontologie, Vol. 2, No. 6. Mammiferes Évolution, J. Piveteau, ed., pp. 535–636. Masson et Cie, Paris.Google Scholar
  46. Hoffstetter, R. (1982). Les édentés xénarthres, un groupe singulier de la faune Neotropical. In:Paleontology, Essential of Historical Geology, E. M. Gallitelli, ed., pp. 385–443, STEM Mocchi Modena Press, Modena.Google Scholar
  47. Hopson, J. A. (1994). Synapsid evolution and the radiation of non-eutherian mammals. In:Major Features of Vertebrate Evolution, D. R. Prothero and R. M. Schoch, eds., pp. 190–219,Short Courses in Paleontology, No. 7, University of Tennessee, Knoxville.Google Scholar
  48. Hopson, J. A., and Crompton, A. W. (1969). Origin of mammals.Evol. Biol. 3: 15–72.Google Scholar
  49. Hopson, J. A., and Rougier, G. W. (1993). Braincase structure in the oldest known skull of a therian mammal: Implications for mammalian systematics and cranial evolution. In:Functional Morphology and Evolution, P. Dodson and P. Gingerich, eds.,Am. J. Sci. 293-A: 268–299.Google Scholar
  50. Johnson, J. I., and Kirsch, J. A. W. (1993). Phylogeny through brain triats: Interordinal relationships among mammals including Primates and Chiroptera. In:Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 293–331. Plenum Press, New York.Google Scholar
  51. Jollie, M. (1968). The head skeleton of a new-bornManis javanica with comments on the ontogeny and phylogeny of the mammal head skeleton.Acta Zool. 49: 227–305.Google Scholar
  52. Kermack, K. A. (1963). The cranial structure of triconodonts.Phil. Trans. Roy. Soc. London B246: 83–102.Google Scholar
  53. Kermack, K. A., Mussett, F., and Rigney, H. W. (1981). The skull ofMorganucodon.Zool. J. Linn. Soc. 71: 1–158.Google Scholar
  54. Kielan-Jaworowska, Z. (1981). Evolution of the therian mammals in the Late Cretaceous of Asia. Part IV. Skull structure inKennalestes andAsioryctes. Results of the Polish-Mongolian Palaeontological Expeditions. Part IX.Palaeontol. Pol. 42: 25–78.Google Scholar
  55. Kielan-Jaworowska, Z., Presley, R., and Poplin, C. (1986). The cranial vascular system in taeniolabidoid multituberculate mammals.Phil. Trans. Roy. Soc. London B313: 525–602.Google Scholar
  56. Kirsch, J. A. W. (1977). The comparative serology of Marsupialia, and a classification of marsupials.Austral. J. Zool. Suppl. Ser.52: 1–152.Google Scholar
  57. Kirsch, J. A. W., Johnson, J. I., and Switzer, R. E. (1983). Phylogeny through brain traits: The mammalian family tree.Brain Behav. Evol. 22: 70–74.PubMedGoogle Scholar
  58. Krause, D. W. (1993).Vucetichia (Gondwanatheria) is a junior synonym ofFerugliotherium (Multituberculata).J. Paleontol. 67: 321–324.Google Scholar
  59. Krause, D. W., and Bonaparte, J. F. (1990). The Gondwanatheria, a new suborder of Multituberculata from South America.J. Vert. Paleontol. 10: 31A.Google Scholar
  60. Kuhn, H.-J. (1971). Die Entwicklung und Morphologie des Schädels vonTachyglossus aculeatus.Abh. senckenberg. naturforsch. Ges. 528: 1–224.Google Scholar
  61. Kuhn, H.-J., and Zeller, U. (1987). The cavum epiptericum in monotremes and therian mamals. In:Morphogenesis of the Mammalian Skull, H.-J. Kuhn and U. Zeller, eds.,Mammalia depicta, Vol. 13, pp. 51–70, Paul Parey Verlag, Hamburg.Google Scholar
  62. Lillegraven, J. A., and Krusat, G. (1991). Cranio-mandibular anatomy ofHaldanodon exspectatus (Docodonta; Mammalia) from the Late Jurassic of Portugal and its implications to the evolution of mammalian characters.Contrib. Geol. Univ. Wyo. 28: 39–138.Google Scholar
  63. Lucas, S. G., and Luo, Z. (1993).Adelobasileus from the Upper Triassic of west Texas: The oldest mammal.J. Vert. Paleontol. 13: 309–334.Google Scholar
  64. Luo, Z. (1989).The Petrosal Structures of Multituberculata (Mammalia) and the Molar Morphology of Early Arctocyonidae (Condylarthra, Mammalia), Ph.D. dissertation, University of California, Berkeley.Google Scholar
  65. Luo, Z. (1994). Sister taxon relationships of mammals and transformations of diagnostic mammalian characters. In:Life in the Shadow of dinosaurs: Early Mesozoic Tetrapods, N. C. Fraser and H.-D. Sues, eds., pp. 98–128, Cambridge University Press, Cambridge.Google Scholar
  66. MacIntyre, G. T. (1967). Foramen pseudovale and quasi-mammals.Evolution 21: 834–841.Google Scholar
  67. MacPhee, R. D. E. (1994). Morphology, adaptations, and relationships ofPlesiorycteropus, a diagnosis of a new order of eutherian mammals.Bull. Am. Mus. Nat. Hist. 220: 1–214.Google Scholar
  68. Maier, W. (1987). The ontogenetic development of the orbitotemporal region in the skull ofMonodelphis domestica) (Didelphidae, Marsupialia), and the problem of the mammalian alisphenoid. In:Morphogenesis of the Mammalian Skull, H.-J. Kuhn and U. Zeller, eds.,Mammalia depicta, Vol. 13, pp. 71–90, Paul Parey, Verlag, Hamburg.Google Scholar
  69. Marshall, L. G., Case, J. D., and Woodburne, M. O. (1990). Phylogenetic relationships of the families of marsupials. In:Current Mammalogy, Vol. 2, H. H. Genoways, ed., pp. 433–505. Plenum Press, New York.Google Scholar
  70. Matthes, E. (1921). Zur Entwicklung des Kopfskelettes der Sirenian. II. Das Primordialcranium vonHalicore dungong.Z. Anat. Entwicklungsgesch. 60: 1–306.Google Scholar
  71. Matthew, W. D. (1918). Edentata. In: A revision of the lower Eocene Wasatch and Wind River faunas. Part V. Insectivora (continued), Glires, Edentata.Bull. Am. Mus. Nat. Hist. 38:565–657.Google Scholar
  72. McDowell, S. B., Jr. (1958). The Greater Antillean insectivores.Bull. Am. Mus. Nat. Hist. 115: 113–214.Google Scholar
  73. McCrady, E. (1938).The Embryology of the Opossum, Memoirs, Wistar Institution, Philadelphia.Google Scholar
  74. McKenna, M. C. (1975). Towards a phylogenetic classification of the Mammalia. In:Phylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 21–46, Plenum Press, New York.Google Scholar
  75. McKenna, M. C. (1987). Molecular and morphological analysis of high-level mammalian interrelationships. In:Molecules and Morphology in Evolution: Conflict or Compromise? C. Patterson, ed., pp. 57–93. Cambridge University Press, Cambridge.Google Scholar
  76. McKenna, M. C. (1992). The alpha crystallin A chain of the eye lens and mammalian phylogeny.Ann. Zool. Fennici 28: 349–360.Google Scholar
  77. McNab, B. K. (1978). Energetics of arboreal folivores: Physiological problems and ecological consequences of feeding on a ubiquitous food supply. In:The Ecology of Arboreal Folivores, G. G. Montgomery, ed., pp. 153–162. Smithsonian Institution Press, Washington, DC.Google Scholar
  78. McNab, B. K. (1985). Energetics, population biology, and distribution of xenarthrans, living and extinct. In:The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas, G. G. Montgomery, ed., pp. 219–232, Smithsonian Institution Press, Washington, DC.Google Scholar
  79. Meng, J. (1992). The stapes ofLambdopsalis bulla (Multituberculata) and transformational analyses on some stapedial features in Mammaliaformes.J. Vert. Paleontol. 12: 459–471.Google Scholar
  80. Miao, D. (1988). Skull morphology ofLambdopsalis bulla (Mammalia, Multituberculata) and its implications to mammalian evolution.Contrib. Geol. Univ. Wyo. Spec. Paper 4: 1–104.Google Scholar
  81. Miao, D., and Lillegraven, J. A. (1986). Discovery of three ear ossicles in a multituberculate mammal.Natl. Geogr. Res. 2: 500–507.Google Scholar
  82. Michelsson, G. (1922). Das Chondrocranium des Igels (Erinaceus europaeus).Z. Anat. Entwicklungsgesch. 65: 509–543.Google Scholar
  83. Miyamoto, M. M., and Goodman, M. (1986). Biomolecular systematics of eutherian mammals: Phylogenetic pattern and classification.Syst. Zool. 35: 230–240.Google Scholar
  84. Mones, A. (1987). Gondwanatheria, un nuevo orden de mamiferos sudamericanos (Mammalia: Edentata: ?Xenarthra).Comun. Paleontol. Mus. His. Montevideo 18: 238–240.Google Scholar
  85. Muirhead, J. (1994).Systematics, Evolution and Paleobiology of Recent and Fossil Bandicoots (Peramelemorphia, Marsupialia), Ph.D. dissertation, University of New South Wales.Google Scholar
  86. Muizon, C. de (1991). La fauna de mamiferos de Tiupampa (paleoceno inferior, formacion Santa Lucia), Bolivia. In:Fosiles Y Facies De Bolivis, Vol. 1. Vertebrados, R. Suarez-Soruco, ed., pp. 575–624, Revista Técnica de YPFB, Santa Cruz, Bolivia.Google Scholar
  87. Muizon, C. de (1994). A new carnivorous marsupial from Paleocene of Bolivia and the problem of marsupial monophyly.Nature 370: 208–211.Google Scholar
  88. Novacek, M. J. (1982). Information for molecular studies from anatomical and fossil evidence on higher eutherian phylogeny. In:Macromolecular Sequences in Systematics and Evolutionary Biology, M. Goodman, ed., pp. 3–41, Plenum Press, New York.Google Scholar
  89. Novacek, M. J. (1986). The skull of leptictid insectivorans and the higher-level classification of eutherian mammals.Bull. Am. Mus. Nat. Hist. 183: 1–112.Google Scholar
  90. Novacek, M. J. (1989). Higher mammal phylogeny: the morphological-molecular synthesis. In:The Hierarchy of Life, B. Fernholm, K. Bremer, and H. Jörnvall, ed., pp. 421–435. Nobel Symposium 70, Elsevier Science, Amsterdam.Google Scholar
  91. Novacek, M. J. (1990). Morphology, paleontology, and the higher clades of mammals. In:Current Mammalogy, Vol. 2, H. H. Genoways, ed., pp. 507–543, Plenum Press, New York.Google Scholar
  92. Novacek, M. J. (1992a). Mammalian phylogeny: Shaking in the tree.Nature 356: 121–125.PubMedGoogle Scholar
  93. Novacek, M. J. (1992b). Fossils, topologies, missing data, and the higher level of phylogeny of eutherian mammals.Syst. Biol. 41: 58–73.Google Scholar
  94. Novacek, M. J. (1993a). Reflections on higher mammalian phylogenetics.J. Mammal. Evol. 1: 3–30.Google Scholar
  95. Novacek, M. J. (1993b). Patterns of diversity in the mammalian skull. In:The Skull, Vol. 2. Patterns of Structural and Systematic Diversity, J. Hanken and B. K. Hall, eds., pp. 438–545, University of Chicago Press, Chicago.Google Scholar
  96. Novacek, M. J. (1994). A pocketful of fossils.Nat. Hist. 103: 40–43.Google Scholar
  97. Novacek, M. J., and Wyss, A. R. (1986a). Higher-level relationships of the recent eutherian orders: Morphological evidence.Cladistics 2: 257–287.Google Scholar
  98. Novacek, M. J., and Wyss, A. (1986b). Origin and transformation of the mammalian stapes. In:Vertebrates, Phylogeny, and Philosophy, K. M. Flanagan and J. A. Lillegraven, eds.,Contrib. Geol. Univ. Wyo. Spec. Paper 3, pp. 35–53.Google Scholar
  99. Novacek, M. J., Wyss, A. R., and McKenna, M. C. (1988). The major groups of eutherian mammals. In:The Phylogeny and Classification of Tetrapods, Vol. 2. Mammals, M. J. Benton, ed., pp. 31–71. Clarendon Press, Oxford.Google Scholar
  100. Novacek, M. J., Dashzeveg, D., and McKenna, M. C. (1994). Late Cretaceous mammals from Ukhaa Tolgod. Mongolia.J. Vert. Paleont. 14: 40A.Google Scholar
  101. Parker, W. K. (1886). On the structure and development of the skull of the Mammalia. III. Insectivora.Phil. Trans. Roy. Soc. London 176: 121–275.Google Scholar
  102. Patterson, B. (1978). Pholidota and Tubulidentata. In:Evolution of African Mammals, V. J. Maglio and H. B. S. Cooke, eds., pp. 268–278, Harvard University Press, Cambridge, MA.Google Scholar
  103. Patterson, B., Segall, W., and Turnbull, W. D. (1989). The ear region in xenarthrans (=Edentata: Mammalian) I. Cingulates.Fieldiana, Geol. n.s. 18: 1–46.Google Scholar
  104. Patterson, B., Segall, W., Turnbull, W. D., and Gaudin, T. J. (1992). The ear region in xenarthrans (=Edentata: Mammalia). II. Pilosa (sloths, anteaters), palacanodonts, and a miscellany.Fieldiana Geol. n.s. 24: 1–79.Google Scholar
  105. Presley, R. (1981). Alisphenoid equivalents in placentals, marsupials, monotremes and fossils.Nature 294: 668–670.Google Scholar
  106. Reig, O. A., Kirsch, J. A. W., and Marshall, L. G. (1987). Systematic relationships of the living and Neocenozoic American “opossum-like” marsupials (Suborder Didelphimorpha), with comments on the classification of these and other Cretaceous and Paleogene New World and European metatherians. In:Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. 1–89. Surrey Beatty & Sons, Chipping Norton.Google Scholar
  107. Robineau, D. (1969). Morphologie externe du complexe osseux temporal chez les siréniens.Mém. Mus. Hist. Nat. Paris Sér. A (Zool.) 60: 1–32.Google Scholar
  108. Rose, K. D., and Emry, R. J. (1993). Relationships of Xenarthra, Pholidota, and fossil “edentates”. InMammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, ed., pp. 81–102. Springer-Verlag, New York.Google Scholar
  109. Rougier, G. W. (1993).Vincelestes neuquenianus Bonaparte (Mammalia, Theria), un Primitivo Mamífero del Cretácico Inferior de la Cuenca Neuquina, Ph.D. dissertation, University of Buenos Aires, Buenos Aires.Google Scholar
  110. Rougier, G. W., Wible, J. R., and Hopson, J. A. (1992). Reconstruction of the cranial vessels in the early Cretaceous mammalVincelestes neuquenianus: Implications for the evolution of the mammalian cranial vascular system.J. Vert. Paleontol. 12: 188–216.Google Scholar
  111. Rowe, T. (1988). Definition, diagnosis and origin of Mammmalia.J. Vert. Palcontol. 8: 241–264.Google Scholar
  112. Rowe, T. (1993). Phylogenetic systematics and the early history of mammals. In:Mammal Phylogeny: Mesozoic Differentation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 129–145, Springer-Verlag, New York.Google Scholar
  113. Sarich, V. M. (1985). Xenarthran systematics: albumin immunological evidence. In:The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas, G. G. Montgomery, ed., pp. 77–81, Smithsonian Institution Press, Washington, DC.Google Scholar
  114. Schneider, R. (1955). Zur Entwicklung des Chondrocraniums der GattungBradypus Gegenbaurs Morph. Jb. 209–309.Google Scholar
  115. Segall, W. (1969). The middle ear region ofDromiciops.Acta Anat. 72: 489–501.PubMedGoogle Scholar
  116. Segall, W. (1970). Morphological parallelism of the bulla and auditory ossicles in some insectivores and marsupials.Fieldiana Zool. 51: 169–205.Google Scholar
  117. Segall, W. (1971). The auditory region (ossicles, sinuses) in gliding mammals and selected representatives of non-gliding genera.Fieldiana Zool. 58: 27–59.Google Scholar
  118. Segall, W. (1973). Characteristics of the ear, especially the middle ear in fossorial mammals, compared with those in the Manidae.Acta Anat. 86: 96–110.PubMedGoogle Scholar
  119. Shoshani, J. (1986). Mammalian Phylogeny: Comparison of morphological and molecular results.Mol. Biol. Evol. 3: 222–242.PubMedGoogle Scholar
  120. Simpson, G. G. (1931).Metacheiromys and the relationships of the Edentata.Bull. Am. Mus. Nat. Hist. 59: 295–381.Google Scholar
  121. Simpson, G. G. (1937). Skull structure of the Multituberculata.Bull. Am. Mus. Nat. Hist. 73: 727–763.Google Scholar
  122. Simpson, G. G. (1938). Osteography of the ear region in monotremes.Am. Mus. Novitates 978: 1–15.Google Scholar
  123. Simpson, G. G. (1945). The principles of classification and a classification of mammals.Bull. Am. Mus. Nat. Hist. 85: 1–350.Google Scholar
  124. Slijper, E. J. (1946). Comparative biologic-anatomical investigations on the vertebral column and spinal musculature of mammals.Kon. Ned. Akad. Wet. Verh. (Tweede Sectie) 17: 1–128.Google Scholar
  125. Springer, M. S., and Woodburne, M. O. (1989). The distribution of some basicranial characters within the Marsupialia and a phylogeny of the Phalangeriformes.J. Vert. Paleontol. 9: 210–221.Google Scholar
  126. Starck, D. (1941). Zur Morphologie des Primordialkraniums vonManis javanica Desn.Gegenbaurs Morph. Jb. 86: 1–122.Google Scholar
  127. Starck, D. (1967). Le crâne de mammifères. In:Traité de Zoologie, P.-P. Grassé, ed., pp. 405–549, 1095–1102, Masson, Paris.Google Scholar
  128. Storch, G. (1981).Eurotamandua joresi, ein Myrmecophagidae aus dem Eozän der “Grube Messel” bei Darmstadt (Mammalia, Xenarthra).Senckenbergiana lethaea 61: 247–289.Google Scholar
  129. Swofford, D. L. (1993).PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1., Smithsonian Institution, Washington, DCGoogle Scholar
  130. Szalay, F. S. (1977). Phylogenetic relationships and a classification of eutherian mammals. In:Major Patterns of Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 315–374. Plenum Press, New York.Google Scholar
  131. Szalay, F. S., and Schrenk, F. (1994). Middle EoceneEurotamandua and the early differentiation of the Edentata.J. Vert. Paleontol. 14: 48A.Google Scholar
  132. Szalay, F. S., Tattersall, I. and Decker, R. L. (1975). Phylogenetic relationships ofPleiadapis-posteranial evidence. In:Contributions to Primatology, Vol. 5, Approaches to Primate Paleobiology, F. S. Szalay, ed., pp. 136–166, Karger, Basel.Google Scholar
  133. Tandler, J. (1899). Zur vergleichenden Anatomie der Kopfarterien bei den Mammalia.Denkschr. Kais. Akad. Wiss. Wien math.-naturw. Klasse 67: 677–784.Google Scholar
  134. Thewissen, J. G. W. (1985). Cephalic evidence for the affinities of Tubulidentata.Mammalia 49: 257–284.Google Scholar
  135. Thewissen, J. G. M., and Domning, D. P. (1992). The role of phenacodontids in the origin of the modern orders of ungulate mammals,J. Vert. Paleontol. 12: 494–504.Google Scholar
  136. Thewissen, J. G. M., and Gingerich, P. D. (1989). Skull and endocranial cast ofEoryctes melamus, a new palaeoryctoid (Mammalia: Insectivora) from the early Eocene of western North America.J. Vert. Paleontol. 9: 459–470.Google Scholar
  137. Thomas, O. (1987). On the homologies and succession of the teeth in the Dasyuridae, with attempt to trace the history of the evolution of mammalian teeth in general.Phil. Trans. Roy. Soc. London 1887B: 443–462.Google Scholar
  138. Toeplitz, C. (1920). Bau und Entwicklung des Knorpelschädels vonDidelphys marsupialis.Zool. Stuttgart 27: 1–84.Google Scholar
  139. Van Valen, L. (1966). Deltatheridia, a new order of mammals.Bull. Am. Mus. Nat. Hist. 132: 1–126.Google Scholar
  140. Wahlert, J. H. (1985). Cranial foramina of rodents. In:Evolutionary Relationships among Rodents: A Multidisciplinary Analysis, W. P. Luckett and J.-L. Hartenberger, eds., pp. 311–332. Plenum Press, New York.Google Scholar
  141. Watson, D. M. S. (1911). The skull ofDiademodon with notes on those of other cynodonts.Ann. Mag. Nat. Hist. 8: 293–330.Google Scholar
  142. Weber, M. (1928).Die Säugetiere, Gustav Fischer, Jena.Google Scholar
  143. Wegner, R. N. (1922). Der Stützknochen, Os nariale, in der Nasenhöhle bei den Gürtelieren, Dasypodidae, and seine homologen Gebilde bei Amphibien, Reptilien und Monotremen.Gegenbaurs Morph. Jb. 51: 413–492.Google Scholar
  144. Wegner, R. N. (1950). Unterschiede der Nasenlochgestaltung und des Os nariale bei den Säugetieren (Choloepus) und den Bauriamorphen.Verh. Anat. Ges. 28: 104–111.Google Scholar
  145. Wible, J. R. (1984).The Ontogeny and Phylogeny of the Mammalian Cranial Arterial Pattern, Ph. D. dissertation, Duke University, Durham, NC.Google Scholar
  146. Wible, J. R. (1986). Transformations in the extracranial course of the internal carotid artery.J. Vert. Paleontol. 6: 313–325.Google Scholar
  147. Wible, J. R. (1987). The eutherian stapedial artery: Character analysis and implications for superordinal relationships.Zool. J. Linn. Soc. 91: 107–135.Google Scholar
  148. Wible, J. R. (1990). Petrosals of Late Cretaceous marsupials from North America and a cladistic analysis of the petrosal in therian mammals.J. Vert. Paleontol. 10: 183–205.Google Scholar
  149. Wible, J. R. (1991). Origin of Mammalia: the craniodental evidence reexamined.J. Vert. Paleontol. 11: 1–28.Google Scholar
  150. Wible, J. R., and Hopson, J. A. (1993). Basicranial evidence for early mammal phylogeny. In:Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 45–62, Springer-Verlag, New York.Google Scholar
  151. Wible, J. R., Miao, D., and Hopson, J. A. (1990). The septomaxilla in fossil and Recent synapsids and the problem of the septomaxilla of monotremes and armadillos.Zool. J. Linn. Soc. 98: 203–228.Google Scholar
  152. Woodward, A. S. (1900). On some remains ofGrypotherium (Neomylodon) listai and associated mammals from a cavern near Consuelo Cove, Last Hope Inlet, Patagonia.Proc. Zool. Soc. London 1900: 64–79.Google Scholar
  153. Wyss, A. R., Novacek, M. J., and McKenna, M. C. (1987). Amino acid sequence versus morphological data and the interordinal relationships of mammals.Mol. Biol. Evol. 4: 99–116.PubMedGoogle Scholar
  154. Young, C. C. (1947). Mammal-like reptiles from Lufeng, Yunnan, China.Proc. Zool. Soc. London 117: 537–597.Google Scholar
  155. Zeller, U. (1989). Die Entwicklung und Morphologie des Schädels vonOrnithorhynchus anatinus (Mammalia: Prototheria: Monotremata).Abh. senckenberg. Naturforsch. Ges. 545: 1–188.Google Scholar
  156. Zeller, U. (1993). Ontogenetic evidence for cranial homologies in monotremes and therians, with special reference toOrnithorhynchus. In:Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 95–107, Springer-Verlag, New York.Google Scholar
  157. Zeller, U., Wible, J. R., and Elsner, M. (1993). New ontogenetic evidence on the septomaxilla ofTamandua andCholoepus (Mammalia, Xenarthra), with a reevaluation of the homology of the mammalian septomaxilla.J. Mammal. Evol. 1: 31–46.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Timothy J. Gaudin
    • 1
  • John R. Wible
    • 2
  • James A. Hopson
    • 3
  • William D. Turnbull
    • 4
  1. 1.Department of Biological and Environmental SciencesUniversity of Tennessee at ChattanoogaChattanooga
  2. 2.Department of Anatomical Sciences and Neurobiology, School of MedicineUniversity of LouisvilleLouisville
  3. 3.Department of Organismal Biology and AnatomyUniversity of ChicagoChicago
  4. 4.Department of GeologyField Museum of Natural HistoryChicago

Personalised recommendations