Advertisement

Journal of Mammalian Evolution

, Volume 3, Issue 1, pp 3–29 | Cite as

Relationships among didelphid marsupials based on sequence variation in the mitochondrial cytochrome B gene

  • James L. Patton
  • Sergio F. dos Reis
  • Maria Nazareth F. da Silva
Article

Abstract

Variation in the mitochondrial cytochrome b gene (nucleotide and amino acid sequences) is evaluated for 9 genera and 15 species of American opossums in the family Didelphidae, using the American caenolestid rat opossumLestoros and the New Guinean peroryctid bandicootEchimypera as outgroups. Phylogenetic analyses (parsimony and distance) strongly support the monophyly of the Didelphidae and delineate two major clades; (1)Didelphis andPhilander are strongly aligned sister taxa, withMetachirus weakly but consistently associated with them, and (2)Marmosa plusMicoureus, withMonodelphis falling outside that pair. The generaMarmosops, Caluromys, andGlironia exhibit varied relationships, depending upon the method of analysis and data (DNA or amino acid sequences) used, but generally are placed individually or in combinations near or at the base of the didelphid radiation. Some aspects of these relationships are consistent with current taxonomic views, but others are in marked contrast. Specifically, a clade comprised of the mouse opossumsMarmosa, Micoureus, andMarmosops is strongly rejected by log-likelihood analysis, contrary to expectations from some current classifications. Also, the woolly opossumsCaluromys andGlironia also do not form a sister-taxon relationship, as suggested by their placement in a subfamily separate from the remaining didelphids examined. However, such a relationship cannot be rejected from log-likelihood analyses. The relationships suggested fromcyt-b sequences are strongly concordant with those based on DNA-DNA hybridization analyses. In addition to systematic and phylogenetic properties, molecular evolution of the didelphid cytochrome b gene sequence is characterized according to nucleotide bias and rate differentials at each codon position and across the entire sequence.

Key Words

marsupials Didelphidac mtDNA sequences cytochrome b phylogeny evolutionary rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, N. W., and Clayton, D. A. (1981). Sequence and gene organization of mouse mitochrondrial DNA.Cell 26: 167–180.PubMedGoogle Scholar
  2. Bremer, K. (1988). The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction.Evolution 42: 795–803.Google Scholar
  3. Brown, W. M. (1985). The mitochondrial genome of animals. In:Molecular Evolutionary Genetics, R. J. MacIntyre, ed., pp. 95–130, Plenum Press, New York.Google Scholar
  4. Brown, W. M., Prager, E. M., Wang, A., and Wilson, A. C. (1982). Mitochondrial DNA sequences of primates: Tempo and mode of evolution.J. Mol. Evol. 18: 225–239.PubMedGoogle Scholar
  5. Cabot, E. L., and Beckenbach, A. T. (1989). Simultaneous editing of multiple nucleic acid and protein sequences with ESEE,Comp. Appl. Biosci. 5: 233–234.PubMedGoogle Scholar
  6. da Silva, M. N. F., and Patton, J. L. (1993). Amazonian phylogeography: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha).Mol. Phylo. Evol. 2: 243–255.Google Scholar
  7. Donoghue, M. J., Olmstead, R. G., Smith, J. F., and Palmer, J. D. (1992). Phylogenetic relationships ofDipsacales based onrbcL sequences.Ann. Mo. Bot. Garden 79: 333–345.Google Scholar
  8. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap.Evolution 39: 783–791.Google Scholar
  9. Felsenstein, J. (1993).PHYLIP (Phylogeny Inference Package), Version 3.5c, University of Washington, Seattle.Google Scholar
  10. Gardner, A. L. (1993). Order Didelphimorphia. In:Mammal Species of the World. A Taxonomic and Geographic Reference, 2nd ed., D. E. Wilson and D. M. Reeder, eds. pp. 15–23, Smithsonian Institution Press, Washington, DC, and London.Google Scholar
  11. Goin, F. J. (1993). Living South American opossums arenot living fossils. In:Abstracts, Sixth International Theriological Congress, pp. 112–113, Sydney.Google Scholar
  12. Hershkovitz, P. (1992a). Ankle bones: The chilean opossum.Dromiciops gliroides Thomas, and marsupial phylogeny.Bonn. Zool. Beitr. 43: 181–213.Google Scholar
  13. Hershkovitz, P. (1992b). The South American gracile mouse opossums, genusGracilinanus gardner and Creighton, 1989 (Marmosidae, Marsupialia): A taxonomic review with notes on general morphology and relationships.Fieldiana Zool. New Ser. 70: v-56.Google Scholar
  14. Hillis, D. M., and Huelsenbeck, J. P. (1992). Signal, noise, and reliability in molecular phylogenetic analyses.J. Hered. 83: 189–195.PubMedGoogle Scholar
  15. Irwin, D. M., and Árnason, U. (1994). Cytochrome b gene of marine mammals: phylogeny and evolution.J. Mammal. Evol. 2: 37–55.Google Scholar
  16. Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals.J. Mol. Evol. 32: 128–144.PubMedGoogle Scholar
  17. Janke, A., Feldmaier-Fuchs, G., Thomas, W. K., von Haeseler, A., and Pääbo, S. (1994). The marsupial mitochondrial genome and the evolution of placental mammals.Genetics 137: 243–256.PubMedGoogle Scholar
  18. Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences.J. Mol. Evol. 16: 111–120.PubMedGoogle Scholar
  19. Kirsch, J. A. W. (1977). The comparative serology of Marsupialia, and a classification of marsupials.Aust. J. Zool. Suppl. Ser.52: 1–152.Google Scholar
  20. Kirsch, J. A. W. and Palma, R. E. (1995). DNA/DNA hybridization studies of carnivorous marsupials. V. A further estimate of relationships among opossums (Marsupialia: Didelphidae).Mammalia (in press).Google Scholar
  21. Kirsch, J. A. W., Bleiweiss, R. E., Dickerman, A. W., and Reig, O. A. (1993). DNA/DNA hybridization studies of carnivorous marsupials. III. Relationships among species ofDidelphis (Didelphidae).J. Mammal. Evol. 2: 75–97.Google Scholar
  22. Kirsch, J. A. W., Dickerman, A. W., and Reig, O. A. (1995). DNA/DNA hybridization studies of carnivorous marsupials. IV. Intergeneric relationships of the opossums (Didelphidae).Marmosiana 1 (in press).Google Scholar
  23. Kishino, H., and Hasegawa, M. (1989). Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea.J. Mol. Evol. 29: 170–179.PubMedGoogle Scholar
  24. Kumar, S., Tamura, K., and Nei, M. (1993).MEGA: Molecular Evolutionary Genetics Analysis, Version 1.02, Pennsylvania State University, University Park.Google Scholar
  25. Lapointe, F.-J., and Kirsch, J. A. W. (1995). Estimating phylogenies from Lacunose distance matrices, with special reference to DNA hybridization data.Mol Biol. Evol. 12: 266–284.Google Scholar
  26. Ma, D.-P., Zharkikh, A., Graur, D., VandeBerg, J. L., and Li, W.-H. (1993). Structure and evolution of opossum, guinea pig. and porcupine cytochromeb genes.J. Mol. Evol. 36: 327–334.PubMedGoogle Scholar
  27. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982).Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  28. Marshall, L. G. (1987). Systematics of Itaboraian (Middle Paleocene) age “opossum-like” marsupials from the limestone quarry at São José de Itaborai, Brazil. InPossums and Opossums: Studies in Evolution, M. Archer, ed., pp. 91–160, Surrey Beatty & Sons, Chipping Norton, Australia.Google Scholar
  29. Marshall, L. G., and Cifelli, R. L. (1990). Analysis of changing diversity patterns in Cenozoic land mammal age faunas, South America.Palaeovertebrata 19: 169–210.Google Scholar
  30. Miller, S. A., Dykes, D. D., and Polesky, H. F. (1988). A simple salting procedure for extracting DNA from human nucleated cells.Nucleic Acids Res. 16: 215.Google Scholar
  31. Pine, R. H. (1973). Anatomical and nomenclatural notes on opossums.Proc. Biol. Soc. Wash. 86: 391–402.Google Scholar
  32. Reig, O. A., Kirsch, J. A. W., and Marshall, L. G. (1987). Systematic relationships of the living and Neocenozoic American “opossum-like” marsupials (suborder Didelphimorphia), with comments on the classification of these and of the Cretaceous and Paleogene New World and European metatherians. In:Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. 1–89, Surrey Beatty & Sons, Chipping Norton, Australia.Google Scholar
  33. Rzhetsky, A., and Nei, M. (1992). A simple method for estimating and testing minimum-evolution trees.Mol. Biol. Evol. 9: 945–967.Google Scholar
  34. Rzhetsky, A., and Nei, M. (1993). Theoretical foundation of the minimum-evolution method of phylogenetic inference.Mol. Biol. Evol. 10: 1073–1095.PubMedGoogle Scholar
  35. Simpson, G. G. (1972). Didelphidae from the Chapadmalal Formation in the Museo Municipal de Ciencias Naturales of Mar del Plata.Mar del Plata Mus. Cienc. Natur. Publ. 2: 1–40.Google Scholar
  36. Smith, M. F., and Patton, J. L. (1993). The diversification of South American murid rodents: Evidence from mitochondrial DNA sequence data for the akodontine tribe.Biol. J. Linn. Soc. 50: 149–177.Google Scholar
  37. Springer, M. S., Westerman, M., and Kirsch, J. A. W. (1994). Relationships among orders and families of marsupials based on 12S ribosomal DNA sequences and the timing of the marsupial radiation.J. Mammal. Evol. 2: 85–115.Google Scholar
  38. Swofford, D. L. (1993).Phylogenetic Analysis Using Parsimony (PAUP), Version 3.1.1, Illinois Natural History Survey. Champaign.Google Scholar
  39. Szalay, F. S. (1982). A new appraisal of marsupial phylogeny and classification. In:Carnivorous Marsupials, M. Archer, ed., pp. 621–640. Royal Zoological Society of New South Wales. Sydney.Google Scholar
  40. Szalay, F. S. (1994).Evolutionary History of the Marsupials and an Analysis of Osteological Characters, Cambridge University Press, Cambridge and New York.Google Scholar
  41. Tate, G. H. H. (1933). A systematic revision of the marsupial genusMarmosa.Bull. Am. Mus. Nat. Hist. 66: 1–250.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • James L. Patton
    • 1
  • Sergio F. dos Reis
    • 2
  • Maria Nazareth F. da Silva
    • 1
    • 3
  1. 1.Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeley
  2. 2.Departamento de ParasitologiaUniversidade Estadual de CampinasSão PauloBrazil
  3. 3.Departamento de EcologiaInstituto Nacional de Pesquisas da AmazôniaManausBrazil

Personalised recommendations