Mathematische Annalen

, Volume 286, Issue 1–3, pp 255–260

On the Euler number of an orbifold

  • Friedrich Hirzebruch
  • Thomas Höfer
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [DHVW1]
    L. Dixon, J. Harvey, C. Vafa, E. Witten: Strings on orbifolds. I. Nucl. Phys.B 261, 678–686 (1985)MathSciNetCrossRefGoogle Scholar
  2. [DHVW2]
    L. Dixon, J. Harvey, C. Vafa, E. Witten: Strings on orbifolds. II. Nucl. Phys.B274, 285–314 (1986)MathSciNetCrossRefGoogle Scholar
  3. [G1]
    L. Göttsche: Die Betti-Zahlen des Hilbert-Schemas for Unterschemata der Läugen einer glatten Fläche. Diplomarbeit, Bonn 1988Google Scholar
  4. [G2]
    L. Göttsche: The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math. Ann.286, 193–207 (1990)MathSciNetCrossRefMATHGoogle Scholar
  5. [M]
    I.G. Macdonald: The Poincaré polynomial of a symmetric product. Proc. Camb. Phil. Soc.58, 563–568 (1962)MathSciNetCrossRefMATHGoogle Scholar
  6. [S]
    G. Segal: Letter to F. Hirzebruch, December 1988. (Joint paper with M. Atiyah in preparation)Google Scholar
  7. [St-W]
    A. Strominger, E. Witten: New manifolds for superstring compactification. Commun. Math. Phys.101, 341–361 (1985)MathSciNetCrossRefGoogle Scholar
  8. [V]
    C. Vafa: Strings on orbifolds. In: Links between geometry and mathematical physics, Schloß Ringberg 1987. MPI Preprint 87-58Google Scholar
  9. [Z]
    D. Zagier: Equivariant Pontrjagin classes and application to orbit spaces. (Lecture Notes in Mathematics, Vol. 290). Berlin Heidelberg New York: Springer 1972CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Friedrich Hirzebruch
    • 1
  • Thomas Höfer
    • 1
  1. 1.Max-Planck-Institut für MathematikBonn 3Federal Republic of Germany

Personalised recommendations