Mathematische Annalen

, Volume 286, Issue 1–3, pp 101–128 | Cite as

Orbit closures of generic unipotent flows on homogeneous spaces ofSL(3, ℝ)

  • S. G. Dani
  • G. A. Margulis
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A.: Introduction aux groupes arithmetiques. Publ. de l'Inst. Math. de l'Univ. de Strassbourg XV. Paris: Hermann 1969MATHGoogle Scholar
  2. 2.
    Borel, A., Tits, J.: Groupes réductifs. Publ. Math. I.H.E.S.27, 55–150 (1965)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dani, S.G.: A simple proof of Borel's density theorem. Math. Z.174, 81–94 (1980)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Dani, S.G.: On orbits of unipotent flows on homogeneous spaces. Ergod. Theory Dyn. Syst.4, 25–34 (1984)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dani, S.G.: Divergent trajectories of flows on homogeneous spaces and Diophantine approximation. J. Reine Angew. Math.359, 55–89 (1985)MathSciNetMATHGoogle Scholar
  6. 6.
    Dani, S.G.: Dynamics of flows on homogeneous spaces. A survey. Proceedings of Coloquio de Systemas Dinamicos (Guanajuato, 1983), Aportacione Mat. 1, Soc. Mat. Mexicana, Mexico City, pp. 1–30, 1985MATHGoogle Scholar
  7. 7.
    Dani, S.G.: On orbits of unipotent flows on homogeneous spaces. II Ergod. Theory Dyn. Syst.6, 167–182 (1986)MathSciNetMATHGoogle Scholar
  8. 8.
    Dani, S.G.: Orbits of horospherical flows. Duke Math. J.53, 177–188 (1986)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dani, S.G., Margulis, G.A.: Values of quadratic forms at primitive integral points. C.R. Acad. Sci. Paris, Ser. I,308, 199–203 (1989)MathSciNetMATHGoogle Scholar
  10. 10.
    Dani, S.G., Margulis, G.A.: Values of quadratic forms at primite integral points. Invent. Math.98, 405–424 (1989)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dani, S.G., Margulis, G.A.: Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces (under preparation)Google Scholar
  12. 12.
    Dani, S.G., Raghavan, S.: Orbits of Euclidean frames under discrete linear groups. Isr. J. Math.36, 300–320 (1980)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Green, L.: Nilflows, measure theory, in: Flows on homogeneous spaces. Ann. Math. Studies. Auslander, L., Green, L., Hahn, F. (eds.). Princeton: Princeton Univ. Press 1963Google Scholar
  14. 14.
    Hedlund, G.A.: Fuchsion groups and transitive horocycles. Duke Math. J.2, 530–542 (1936)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Howe, R., Moore, C.C.: Asymptotic behaviour of unitary representations. J. Funct. Anal.32, 72–96 (1979)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Margulis, G.A.: Arithmetic properties of discrete subgroups. Usp. Mat. Nauk29, 49–98 (1974); Russ. Math. Surv.29, 107–156 (1974)MathSciNetMATHGoogle Scholar
  17. 17.
    Margulis, G.A.: Formes quadratique indefinies et flots unipotents sur les éspaces homogènes. C.R. Acad. Sci. Paris, Ser. I.304, 249–253 (1987)MathSciNetMATHGoogle Scholar
  18. 18.
    Margulis, G.A.: Lie groups and ergodic theory. In: Algebra — some current trenes. Proceedings (Varna, 1986), pp. 130–146. Berlin Heidelberg New York: Springer 1988CrossRefGoogle Scholar
  19. 19.
    Margulis, G.A.: Indefinite quadratic forms and unipotent flows on homogeneous spaces. Proceedings of Semester on Dynamical Systems and Ergodic Theory (Warsaw 1986), Banach Centre Publications, Warsaw (to appear)Google Scholar
  20. 20.
    Margulis, G.A.: Discrete subgroups and ergodic theory, Proceedings of a Conference in honour of Professor A. Selberg (Oslo, 1987) pp. 377–398, New York London: Academic Press 1989MATHGoogle Scholar
  21. 21.
    Parry, W.: Ergodic properties of affine transformations and flows on nilmanifolds. Am. J. Math.91, 751–771 (1969)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Raghunathan, M.S.: Discrete subgroups of Lie groups. Berlin Heidelberg New York: Springer 1972CrossRefMATHGoogle Scholar
  23. 23.
    Ratner, M.: Invariant measures for unipotent translations on homogeneous spaces (preprint)Google Scholar
  24. 24.
    Zimmer, R.J.: Orbit spaces of unitary representations, ergodic theory and simple Lie groups. Ann. Math.106, 573–588 (1977)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • S. G. Dani
    • 1
  • G. A. Margulis
    • 2
  1. 1.Tata Institute of Fundamental ResearchSchool of MathematicsBombayIndia
  2. 2.Institute for Problems of Information TransmissionMoscowUSSR

Personalised recommendations