Advertisement

Inventiones mathematicae

, Volume 59, Issue 3, pp 227–286 | Cite as

Values of abelianL-functions at negative integers over totally real fields

  • Pierre Deligne
  • Kenneth A. Ribet
Article

Keywords

Negative Integer Real Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barsky, D.: Fonctions zêtap-adiques d'une classe de rayon des corps totalement réels. Groupe d'étude d'analyse ultramétrique 1977–78; errata, 1978–79Google Scholar
  2. 2.
    Cassou-Noguès, P.: Valeurs aux entiers négatifs des fonctions zêta et fonctions zêtap-adiques. Invent. Math.51, 29–59 (1979)Google Scholar
  3. 3.
    Coates, J.:p-adicL-functions and Iwasawa's theory. In: Algebraic Number Fields (A. Fröhlich, ed.). London-New York-San Francisco: Academic Press 1977Google Scholar
  4. 4.
    Deligne, P.: Variétés abéliennes ordinaires sur un corps fini. Invent. Math.8, 238–243 (1969)Google Scholar
  5. 5.
    Deligne, P.: Letters to J-P. Serre: October, 1972 and December, 1973Google Scholar
  6. 6.
    Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. Lecture Notes in Math.349, 143–316 (1973)Google Scholar
  7. 7.
    Eichler, M.: On theta functions of real algebraic number fields. Acta Arith.33, 269–292 (1977)Google Scholar
  8. 8.
    Gelbart, S.: Weil's representation and the spectrum of the metaplectic group. Lecture Notes in Math.530, 1976Google Scholar
  9. 9.
    Hecke, E.: Mathematische Werke. Göttingen: Vandenhoeck und Ruprecht 1959Google Scholar
  10. 10.
    Hirzebruch, F.: Hilbert modular surfaces. Enseignement Math.19, 183–281 (1973)Google Scholar
  11. 11.
    Hurwitz, A.: Mathematische Werke. Basel: Emil Birkhäuser 1932Google Scholar
  12. 12.
    Igusa, J.: On the algebraic theory of elliptic modular functions. J. Math. Soc. Japan20, 96–106 (1968)Google Scholar
  13. 13.
    Iwasawa, K.: Lectures onp-adicL-functions. Princeton: Princeton University Press 1972Google Scholar
  14. 14.
    Jacquet, H., Langlands, R.P.: Automorphic forms onGL(2). Lectures Notes in Math114 (1970)Google Scholar
  15. 15.
    Katz, N.:p-adic properties of modular schemes and modular forms. Lecture Notes in Math.350, 70–190 (1973)Google Scholar
  16. 16.
    Katz, N.: The Eisenstein measure andp-adic interpolation. Amer. J. Math.99, 238–311 (1977)Google Scholar
  17. 17.
    Katz, N.:p-adicL-functions via moduli of elliptic curves. Proc. Symp. Pure Math.29, 479–506 (1975)Google Scholar
  18. 18.
    Katz, N.:p-adic interpolation of real analytic Eisenstein series. Ann. of Math.104, 459–571 (1976)Google Scholar
  19. 19.
    Katz, N.:p-adicL-functions forCM fields. Invent. Math.49, 199–297 (1978)Google Scholar
  20. 20.
    Koblitz, N.:p-adic numbers,p-adic analysis, and Zeta-Functions. New York-Heidelberg-Berlin: Springer-Verlag 1977Google Scholar
  21. 21.
    Kubert, D., Lang, S.: Units in the modular function field. Lecture Notes in Math.601, 247–275 (1977)Google Scholar
  22. 22.
    Lang, S.: Algebraic Number Theory. Reading, Mass.: Addison-Wesley 1970Google Scholar
  23. 23.
    Lang, S.: Introduction to Modular Forms. Berlin-Heidelberg-New York: Springer-Verlag 1976Google Scholar
  24. 24.
    Lang, S.: Cyclotomic Fields. Berlin-Heidelberg-New York: Springer-Verlag 1978Google Scholar
  25. 25.
    Mazur, B.: Analysep-adique. Unpublished manuscript, 1973Google Scholar
  26. 26.
    Mazur, B., Swinnerton-Dyer, H.P.F.: Arithmetic of Weil Curves. Invent. Math.25, 1–61 (1974)Google Scholar
  27. 27.
    Queen, C.: The existence ofp-adicL-functions. Number Theory and Algebra, pp. 263–288. New York: Academic Press 1977Google Scholar
  28. 28.
    Rapoport, M.: Compactifications de l'espace de modules de Hilbert-Blumenthal. Compositio Math.36, 255–335 (1978)Google Scholar
  29. 29.
    Ribet, K.:p-adic interpolation via Hilbert modular forms. Proc. Symp. Pure Math.29, 581–592 (1975)Google Scholar
  30. 30.
    Ribet, K.: Report onp-adicL-functions over totally real fields. Astérisque61, 177–192 (1979)Google Scholar
  31. 31.
    Sato, M., Shintani, T.: On zeta functions associated with prehomogeneous vector spaces. Ann. of Math.100, 131–170 (1974)Google Scholar
  32. 32.
    Serre, J-P.: Abelianl-adic representations and elliptic curves. New York: Benjamin 1968Google Scholar
  33. 33.
    Serre, J-P.: Formes modulaires et fonctions zêtap-adiques. Lecture Notes in Math.350, 191–268 (1973)Google Scholar
  34. 34.
    Serre, J-P.: Sur le résidu de la fonction zêtap-adique d'un corps de nombres. C.R. Acad. Sci. Paris287, Série A, 183–188 (1978)Google Scholar
  35. 35.
    Shimizu, H.: Theta series and automorphic forms onGL 2. J. Math. Soc. Japan24, 638–683 (1972). (Correction: J. Math. Soc. Japan26, 374–376 (1974))Google Scholar
  36. 36.
    Shintani, T.: On construction of holomorphic cusp forms of half integral weight. Nagoya Math. J.58, 83–126 (1975)Google Scholar
  37. 37.
    Shintani, T.: On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci. Univ. Tokyo Sect. IA23, 393–417 (1976)Google Scholar
  38. 38.
    Siegel, C.L.: Über die Fourierschen Koeffizienten von Modulformen. Gött. Nach.3, 15–56 (1970)Google Scholar
  39. 39.
    Tate, J.: Fourier analysis in number fields and Hecke's zeta-functions. Algebraic Number Theory (J.W.S. Cassels and A. Fröhlich, eds.) London-New York: Academic Press 1967Google Scholar
  40. 40.
    Weil, A.: Fonction zêta et distributions. Séminaire Bourbaki 312, Juin, 1966 (=Collected Papers [1966])Google Scholar
  41. 41.
    Weil, A.: Sur certains groupes d'opérateurs unitaires. Acta Math.111, 143–211 (1964) (=Collected Papers [1964b])Google Scholar
  42. 42.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Fourth edition, reprinted. Cambridge: Cambridge University Press 1935Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Pierre Deligne
    • 1
  • Kenneth A. Ribet
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations