Inventiones mathematicae

, Volume 59, Issue 3, pp 227–286 | Cite as

Values of abelianL-functions at negative integers over totally real fields

  • Pierre Deligne
  • Kenneth A. Ribet
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barsky, D.: Fonctions zêtap-adiques d'une classe de rayon des corps totalement réels. Groupe d'étude d'analyse ultramétrique 1977–78; errata, 1978–79Google Scholar
  2. 2.
    Cassou-Noguès, P.: Valeurs aux entiers négatifs des fonctions zêta et fonctions zêtap-adiques. Invent. Math.51, 29–59 (1979)Google Scholar
  3. 3.
    Coates, J.:p-adicL-functions and Iwasawa's theory. In: Algebraic Number Fields (A. Fröhlich, ed.). London-New York-San Francisco: Academic Press 1977Google Scholar
  4. 4.
    Deligne, P.: Variétés abéliennes ordinaires sur un corps fini. Invent. Math.8, 238–243 (1969)Google Scholar
  5. 5.
    Deligne, P.: Letters to J-P. Serre: October, 1972 and December, 1973Google Scholar
  6. 6.
    Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. Lecture Notes in Math.349, 143–316 (1973)Google Scholar
  7. 7.
    Eichler, M.: On theta functions of real algebraic number fields. Acta Arith.33, 269–292 (1977)Google Scholar
  8. 8.
    Gelbart, S.: Weil's representation and the spectrum of the metaplectic group. Lecture Notes in Math.530, 1976Google Scholar
  9. 9.
    Hecke, E.: Mathematische Werke. Göttingen: Vandenhoeck und Ruprecht 1959Google Scholar
  10. 10.
    Hirzebruch, F.: Hilbert modular surfaces. Enseignement Math.19, 183–281 (1973)Google Scholar
  11. 11.
    Hurwitz, A.: Mathematische Werke. Basel: Emil Birkhäuser 1932Google Scholar
  12. 12.
    Igusa, J.: On the algebraic theory of elliptic modular functions. J. Math. Soc. Japan20, 96–106 (1968)Google Scholar
  13. 13.
    Iwasawa, K.: Lectures onp-adicL-functions. Princeton: Princeton University Press 1972Google Scholar
  14. 14.
    Jacquet, H., Langlands, R.P.: Automorphic forms onGL(2). Lectures Notes in Math114 (1970)Google Scholar
  15. 15.
    Katz, N.:p-adic properties of modular schemes and modular forms. Lecture Notes in Math.350, 70–190 (1973)Google Scholar
  16. 16.
    Katz, N.: The Eisenstein measure andp-adic interpolation. Amer. J. Math.99, 238–311 (1977)Google Scholar
  17. 17.
    Katz, N.:p-adicL-functions via moduli of elliptic curves. Proc. Symp. Pure Math.29, 479–506 (1975)Google Scholar
  18. 18.
    Katz, N.:p-adic interpolation of real analytic Eisenstein series. Ann. of Math.104, 459–571 (1976)Google Scholar
  19. 19.
    Katz, N.:p-adicL-functions forCM fields. Invent. Math.49, 199–297 (1978)Google Scholar
  20. 20.
    Koblitz, N.:p-adic numbers,p-adic analysis, and Zeta-Functions. New York-Heidelberg-Berlin: Springer-Verlag 1977Google Scholar
  21. 21.
    Kubert, D., Lang, S.: Units in the modular function field. Lecture Notes in Math.601, 247–275 (1977)Google Scholar
  22. 22.
    Lang, S.: Algebraic Number Theory. Reading, Mass.: Addison-Wesley 1970Google Scholar
  23. 23.
    Lang, S.: Introduction to Modular Forms. Berlin-Heidelberg-New York: Springer-Verlag 1976Google Scholar
  24. 24.
    Lang, S.: Cyclotomic Fields. Berlin-Heidelberg-New York: Springer-Verlag 1978Google Scholar
  25. 25.
    Mazur, B.: Analysep-adique. Unpublished manuscript, 1973Google Scholar
  26. 26.
    Mazur, B., Swinnerton-Dyer, H.P.F.: Arithmetic of Weil Curves. Invent. Math.25, 1–61 (1974)Google Scholar
  27. 27.
    Queen, C.: The existence ofp-adicL-functions. Number Theory and Algebra, pp. 263–288. New York: Academic Press 1977Google Scholar
  28. 28.
    Rapoport, M.: Compactifications de l'espace de modules de Hilbert-Blumenthal. Compositio Math.36, 255–335 (1978)Google Scholar
  29. 29.
    Ribet, K.:p-adic interpolation via Hilbert modular forms. Proc. Symp. Pure Math.29, 581–592 (1975)Google Scholar
  30. 30.
    Ribet, K.: Report onp-adicL-functions over totally real fields. Astérisque61, 177–192 (1979)Google Scholar
  31. 31.
    Sato, M., Shintani, T.: On zeta functions associated with prehomogeneous vector spaces. Ann. of Math.100, 131–170 (1974)Google Scholar
  32. 32.
    Serre, J-P.: Abelianl-adic representations and elliptic curves. New York: Benjamin 1968Google Scholar
  33. 33.
    Serre, J-P.: Formes modulaires et fonctions zêtap-adiques. Lecture Notes in Math.350, 191–268 (1973)Google Scholar
  34. 34.
    Serre, J-P.: Sur le résidu de la fonction zêtap-adique d'un corps de nombres. C.R. Acad. Sci. Paris287, Série A, 183–188 (1978)Google Scholar
  35. 35.
    Shimizu, H.: Theta series and automorphic forms onGL 2. J. Math. Soc. Japan24, 638–683 (1972). (Correction: J. Math. Soc. Japan26, 374–376 (1974))Google Scholar
  36. 36.
    Shintani, T.: On construction of holomorphic cusp forms of half integral weight. Nagoya Math. J.58, 83–126 (1975)Google Scholar
  37. 37.
    Shintani, T.: On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci. Univ. Tokyo Sect. IA23, 393–417 (1976)Google Scholar
  38. 38.
    Siegel, C.L.: Über die Fourierschen Koeffizienten von Modulformen. Gött. Nach.3, 15–56 (1970)Google Scholar
  39. 39.
    Tate, J.: Fourier analysis in number fields and Hecke's zeta-functions. Algebraic Number Theory (J.W.S. Cassels and A. Fröhlich, eds.) London-New York: Academic Press 1967Google Scholar
  40. 40.
    Weil, A.: Fonction zêta et distributions. Séminaire Bourbaki 312, Juin, 1966 (=Collected Papers [1966])Google Scholar
  41. 41.
    Weil, A.: Sur certains groupes d'opérateurs unitaires. Acta Math.111, 143–211 (1964) (=Collected Papers [1964b])Google Scholar
  42. 42.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Fourth edition, reprinted. Cambridge: Cambridge University Press 1935Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Pierre Deligne
    • 1
  • Kenneth A. Ribet
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance
  2. 2.Berkeley Math. DepartmentBerkeleyUSA

Personalised recommendations