Inventiones mathematicae

, Volume 59, Issue 3, pp 205–213

An upper estimation for topological entropy of diffeomorphisms

  • Feliks Przytycki
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dinaburg, E.I.: A connection between various entropy characterizations of dynamical systems. Izv. Akad. Nauk SSSR, Ser. Mat.35, 324–366 (1971) (In Russian)Google Scholar
  2. 2.
    Gromov, M.: On the entropy of holomorphic maps. PreprintGoogle Scholar
  3. 3.
    Hirsch, M., Pugh, C., Shub, M.: Invariant manifolds. Lecture Notes in Math. 583, Springer, Berlin 1977Google Scholar
  4. 4.
    Katok, S.: The estimation from above for the topological entropy of a diffeomorphism. PreprintGoogle Scholar
  5. 5.
    Krzyżewski, K.: On an estimation of topological entropy. Preprint (In Polish)Google Scholar
  6. 6.
    Misiurewicz, M.: Topological conditional entropy. Studia Math.55, 175–200 (1976)Google Scholar
  7. 7.
    Misiurewicz, M., Szlenk, W.: Entropy of piecewise monotone mappings. Asterisque50, 299–310Google Scholar
  8. 8.
    Oseledec, V.I.: A multiplicative ergodic theorem, Ljapunov characteristic numbers for dynamical systems. Trudy Moskov. Mat. Obšč.19, 179–210 (1968) (English transl.)Google Scholar
  9. 9.
    Pesin, Ya.B.: Invariant manifold families which correspond to nonvanishing characteristic exponents. Izv. Akad. Nauk SSSR, Ser. Mat.40, 1332–1379 (1976)Google Scholar
  10. 10.
    Pesin, Ya.B.: Characteristic Ljapunov exponents and smooth ergodic theory. Russian Math. Surveys32, 54–114 (1977)Google Scholar
  11. 11.
    Ruelle, D.: Ergodic theory of differentiable dynamical systems. Preprint IHES, September 1978Google Scholar
  12. 12.
    Ruelle, D.: An inequality for the entropy of differentiable maps. Bol. Soc. Bras. Mat.9, 83–88 (1978)Google Scholar
  13. 13.
    Sacksteder, R., Shub, M.: Entropy of a differentiable map. Adv. Math.28, 181–185 (1978)Google Scholar
  14. 14.
    Smorodinsky, M.: Ergodic theory, entropy. Lecture Notes in Math. 214, Springer, Berlin 1971Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Feliks Przytycki
    • 1
    • 2
  1. 1.Institute of MathematicsPolish Academy of SciencesWarsawPoland
  2. 2.Instituto de Mátematica Pura e AplicadaRio de JaneiroBrasil

Personalised recommendations