Mathematische Annalen

, Volume 255, Issue 4, pp 523–548 | Cite as

Cusp forms and eigenfunctions of the Laplacian



Cusp Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruggeman, R.W.: Fourier coefficients of cusp. forms. Invent. math.45, 1–18 (1978)Google Scholar
  2. 2.
    Good, A.: Beiträge zur Theorie der Dirichletreihen, die spitzenformen zugeordnet sind. J Number Theory13, 18–65 (1981)Google Scholar
  3. 3.
    Good, A.: Local analysis of Selberg's trace formula (to appear)Google Scholar
  4. 4.
    Iwaniec, H.: Mean values for Fourier coefficients of cusp forms and the Riemann zeta-function. Bordeaux Sém. de Théorie des Nombres 1979/80Google Scholar
  5. 5.
    Kubota, T.: Elementary theory of Einsenstein series. New York: Hasted Press 1973Google Scholar
  6. 6.
    Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and theorems for the special functions of mathematical physics, 3rd ed. Berlin, Heidelberg, New York: Springer 1966Google Scholar
  7. 7.
    Petersson, H.: Über eine Metrisierung der automorphen Formen und die Theone der Poincaréreihen. Math. Ann.117, 453–537 (1940)Google Scholar
  8. 8.
    Rankin, R.A.: Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions. II. Proc. Cambridge Phil. Soc.35, 357–372 (1939)Google Scholar
  9. 9.
    Roelcke, W.: Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I. II. Math. Ann.167, 292–337 (1966);168, 261–324 (1967)Google Scholar
  10. 10.
    Selberg, A.: On the estimation of Fourier coefficients of modular forms. In: Proc. Symp. Pure Math. VIII, pp. 1–15. Providence: American Mathematical Society 1965Google Scholar
  11. 11.
    Siegel, C.L.: Some remarks on discontinuous groups. Ann. Math.46, 674–689 (1943)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • A. Good
    • 1
  1. 1.Forschungsinstitut für MathematikETH-ZentrumZürichSwitzerland

Personalised recommendations