Mathematische Annalen

, Volume 145, Issue 3, pp 227–255 | Cite as

Group-like structures in general categories I multiplications and comultiplications

  • B. Eckmann
  • P. J. Hilton
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Berstein, I., andP. J. Hilton: Category and generalized Hopf invariants. Illinois J. Math.4, 437 (1960).Google Scholar
  2. [2]
    Eckmann, B., andP. J. Hilton: Groupes d'homotopie et dualité I, II, III. Compt. rend.246, pp. 2444, 2555, 2993 (1958).Google Scholar
  3. [3]
    Eckmann, B., andP. J. Hilton: Operators and cooperators in homotopy theory. Math. Ann.141, 1 (1960).Google Scholar
  4. [4]
    Eckmann, B., andP. J. Hilton: Homotopy groups of pairs and exact sequences. Comment. Math. Helv.34, 271 (1960).Google Scholar
  5. [5]
    Eckmann, B., andP. J. Hilton: Structure maps in group theory. Fund. Math.50, 207 (1961).Google Scholar
  6. [6]
    Hilton, P. J.: Homotopy and duality. Lecture notes. Cornell University, 1959.Google Scholar
  7. [7]
    Kan, D. M.: Adjoint functors. Trans. Am. Math. Soc.87, 294 (1958).Google Scholar
  8. [8]
    Kan, D. M.: On monoids and their dual. Bol. Soc. Math. Mex.3, 52 (1958).Google Scholar
  9. [9]
    Kurosh, A. G., A. Kh. Livshits andE. G. Shul'geifer: Foundations of the theory of categories. Uspekhi Matem. Nauk XV,6, 1 (1960).Google Scholar
  10. [10]
    Tsalenko, M. S.: On the foundations of the theory of categories. Uspekhi Matem. Nauk XV,6, 53 (1960).Google Scholar

Copyright information

© Springer-Verlag 1962

Authors and Affiliations

  • B. Eckmann
    • 1
  • P. J. Hilton
    • 2
  1. 1.Zürich
  2. 2.Birmingham

Personalised recommendations