International Journal of Biometeorology

, Volume 19, Issue 4, pp 289–303 | Cite as

The pineal gland and geographical distribution of animals

  • C. L. Ralph


A detailed analysis of the occurrence of parietal eye component of the pineal complex in families of lizards has revealed that those in which the parietal eye is absent in most genera (e.g. Gekkonidae, Teiidae) tend to be restricted to low latitudes, whereas families in which the parietal eye is present in most of the genera (e.g. Agamidae, Iguanidae) extend to higher latitudes. Those few genera which lack parietal eyes in the families where the very great majority have parietal eyes are confined to ranges rather close to the equator. The parietal eye may be important in thermoregulatory or reproductive adaptations at higher latitudes where seasons are more severely varied than at lower latitudes. A pineal body is reported to be absent in crocodilians, edentates and, perhaps, dugongs. All these animals tend to inhabit tropical regions. In contrast, seals and walruses have remarkably large pineal glands and are found at very high latitudes. These few fragments of information cannot be used to support any conclusions, but they do suggest that it might be productive to consider the pineal complexes of animals in the context of their geographical distribution.


Plant Physiology Detailed Analysis Geographical Distribution High Latitude Great Majority 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BINKLEY, S., KLUTH, E. and MENAKER, M. (1971): Pineal function in sparrows: circadian rhythms and body temperature. Science, 174: 311–314.PubMedGoogle Scholar
  2. BREDER, C.M. and RASQUIN, P. (1950): A preliminary report on the role of the pineal organ in the control of pigment cells and light reactions in recent teleost fishes. Science, 111: 10–12.PubMedGoogle Scholar
  3. BREUCKER, H. (1967): Vergleichende histologische Studien an der Zirbel der Vögel. Verh. Anat. Ges. Erg. Anat. Anz., 120: 177–183.Google Scholar
  4. COBB, S. and EDINGER, T. (1962): The brain of the emu (Dromoreus novae—hollandiae, Lath). I. Gross anatomy of the brain and pineal body. Breviora (Camb.), 170: 1–18.Google Scholar
  5. CUELLO, A.C. and TRAMEZZANI, J.H. (1969): The epiphysis cerebri of the Weddell seal: its remarkable size and glandular pattern. Gen. comp. Endocr., 12: 154–164.PubMedGoogle Scholar
  6. CUTORE, G. (1910): Il corpo pineale di alcuni mamiferi. Arch. ital. Anat. Embriol., 9: 402 and 599.Google Scholar
  7. De GRAAF, H.W. (1886): Zur Anatomie und Entwicklung der Epiphyse bei Amphibien and Reptilien. Zool. Anz., 9: 191–194.Google Scholar
  8. EAKIN, R.M. (1973): The Third Eye. University of California Press, Berkeley.Google Scholar
  9. ELDEN, C.A., KEYES, M.C. and MARSHALL, C.E. (1971): Pineal body of the northern fur seal (Callorhinus ursinus ): a model for studying the probable function of the mammalian pineal body. Amer. J. vet. Res., 32: 639–647.PubMedGoogle Scholar
  10. FASSBENDER, E. (1962): Topographie und mikroskopisch-anatomischer Feinbau der Epiphysis cerebri des Pferdes. Morph. Jb., 103: 457–483.Google Scholar
  11. GUNDY, G.C. (1974): The evolutionary history and comparative morphology of the pineal complex in Lacerlilia. Ph.D. dissertation University Pittsburgh. Pittsburgh.Google Scholar
  12. GUNDY, G.C., RALPH, C.L. and WURST, G.Z. (1975): Parietal eyes in lizards: zoogeographical correlates. Science, 190: 671–673.PubMedGoogle Scholar
  13. HAFFEZ, M.A. (1971): Light microscopic studies on the pineal organ in teleost fishes with special regard to its function. J. Morph., 134: 281–314.PubMedGoogle Scholar
  14. HERBERT, J. (1971): The role of the pineal gland in the control by light of the reproductive cycle of the ferret. In: The Pineal Gland, G.E.W.Wolstenholme and J.Knight (ed.). Churchill Livingstone, Edinburgh and London, 303–320.Google Scholar
  15. HILL, W.C.O. (1945): Notes on the dissection of two dugongs. J. Mamm., 26: 153–175.Google Scholar
  16. HOLMGREN, U. (1959): On the structure of the pineal area of teleost fishes. Goteborgs Kungl. Vetensk. Vitterh-Samh. Handl. Ser. B, 8: 1–66.Google Scholar
  17. HÜLSEMANN, M. (1967): Vergleichende histologische Untersuchungen über das Vorkommen von Gliafasern in der Epiphysis cerebri von Säugetieren. Acta Anat., 66: 249–278.PubMedGoogle Scholar
  18. JORDAN, H.E. (1911): The microscopic anatomy of the epiphysis of the opossum. Anat. Rec., 5: 325–338.Google Scholar
  19. KAPPERS, J.A. (1965): Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. Prog. Brain Res., 10: 87–151.PubMedGoogle Scholar
  20. LYNCH, J.D. (1973): The transition from archaic to advanced frogs. In: Evolutionary Biology of the Anurans, J.L.Vial (ed.), University Missouri Press, Columbia.Google Scholar
  21. MENAKER, M. (1975): The role of the pineal in the circadian system of birds. Amer. Zoologist, in press.Google Scholar
  22. MILINE, R. (1969): Le rôle de la glande pinéale dans l'aclimatation au froid. Int. J. Biometeor., 13, Suppl. 1: 6.Google Scholar
  23. MILINE, R. (1971): In: The Pineal Gland. G.E.W.Wolstenholme and J. Knight (ed.), Churchill Livingstone, Edinburgh and London, 30.Google Scholar
  24. MILINE, R., DEVECERSKI, V., SIJACKI, N. and KRISTIC, R. (1970): Pineal gland behavior as affected by cold. Hormones, 1: 321–331.PubMedGoogle Scholar
  25. MURPHY, R.C. (1971): The structure of the pineal organ of the bluefin tuna,Thunnus thynnus. J. Morph., 133: 1–16.PubMedGoogle Scholar
  26. NIR, I., HIRSCHMANN, N. and SULMAN, F.G. (1972): Pineal gland changes of rats exposed to heat. Experientia (Basel), 28: 701.Google Scholar
  27. NOBLE, G.K. (1931): The Biology of Amphibia. McGraw-Hill, New York.Google Scholar
  28. OKSCHE, A. (1965): Survey of the development and comparative morphology of the pineal organ. Prog. Brain Res., 10: 3–28.PubMedGoogle Scholar
  29. OKSCHE, A. (1971): Sensory and glandular elements of the pineal organ. In: The Pineal Gland, G.E.Wolstenholme and J.Knight (ed.), Churchill Livingstone, Edinburgh and London, 127–146.Google Scholar
  30. OMURA, Y. and OGURI, M. (1969): Histological studies on the pineal organ of 15 species of teleosts. Jap. Soc. Sci. Fish., 35: 991–1000.Google Scholar
  31. QUAY, W.B. (1965): Histological structure and cytology of the pineal organ in birds and mammals. Prog. Brain Res., 10: 49–84.PubMedGoogle Scholar
  32. QUAY, W.B. (1972a): Influence of pineal atrophy among birds and its relation to nocturnality. Condor, 74: 33–45.Google Scholar
  33. QUAY, W.B. (1972b): Pineal homeostatic regulation of shifts in the circadian activity rhythm during maturation and aging. Trans. N.Y. Acad. Sci., 34: 239–254.PubMedGoogle Scholar
  34. RALPH, C.L. (1970): Structure and alleged functions of avian pineals. Amer. Zoologist, 10: 217–235.Google Scholar
  35. RALPH, C.L. (1975a): The pineal complex: a retrospective view. Amer. Zool., 15 (Suppl. 1): 105–116.Google Scholar
  36. RALPH, C.L. (1975b): Correlations of melatonin content in pineal gland, blood, and brain of some birds and mammals. Amer. Zoologist, in press.Google Scholar
  37. RASQUIN, P. (1958): Studies in the control of pigment cells and light responses in recent teleost fishes. I. Bull. Amer. Mus. nat. Hist., 114: 1–68.Google Scholar
  38. REITER, R.J., VAUGHAN, M.K., VAUGHAN, G.M., SORRENTINO Jr., S. and DONOFRIO, D.J. (1975): The pineal gland as an organ of internal secretion. In: Frontiers of Pineal Physiology. M.D.Altschule (ed.), MIT Press, Cambridge, Massachusetts and London, 54–174.Google Scholar
  39. RIVAS, L.R. (1953): The pineal apparatus of tunas and related scombrid fishes as a possible light receptor controlling photoactic movements. Bull. Mar. Sci. Gulf Caribbean, 3: 168–180.Google Scholar
  40. RUDEBERG, C. (1969): Structure of the parapineal organ of the adult rainbow trout,Salmo gairdneri Richardson. Z. Zellforsch., 93: 282–304.PubMedGoogle Scholar
  41. SAVAGE, J.M. (1973): The geographic distribution of frogs: patterns and predictions. In: Evolutionary Biology of the Anurans. J.L. Vial (ed.), University Missouri Press, Columbia.Google Scholar
  42. SCHMIDT-NIELSEN, K., DAWSON, T.J. and CRAWFORD Jr., E.C. (1966): Temperature regulation in the Echidna (Tachyglossus aculeatus ). J. cell Physiol., 67: 63–72.PubMedGoogle Scholar
  43. SCHOLANDER, P.F., HOCK, R., WALTERS, V. and IRVING, L. (1950): Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biol. Bull., 99: 259–271.PubMedGoogle Scholar
  44. SMITH, G.E. (1896): The brain of a foetalOrnithorynchus. Quart. J. Micr. Sci., 39: 181.Google Scholar
  45. STEYN, W. (1961): Some epithalamic organs, the subcommissural organ, and their possible relation to vertebrate emergence on dry land. S. Afr. J. Sci., 57: 283–287.Google Scholar
  46. STEYN, W. (1966): Three eyes: wider implications of a narrow specialty. S. Afr. J. Sci., 62: 13–20.Google Scholar
  47. TILNEY, F. and WARREN, L.F. (1919): The morphology and evolutional significance of the pineal body. Amer. Anat. Mem, No. 9, 257 pp.Google Scholar
  48. WARTENBERG, H. and GUSEK, W. (1964): Eeletronenmikroskopische Untersuchungen über die Epiphysis cerebri des Kaninchens. Verh. Anat. Ges. Erg. Anat. Anz., 113: 173–181.Google Scholar
  49. WEINDL, A. (1973): Neuroendocrine aspects of circumventricular organs. In: Frontiers in Neuroendocrinology, W.F.Ganong and L.Martini (ed.), Oxford University Press, Oxford, 3–32.Google Scholar
  50. YOUNG, J.Z. (1935): The photoreceptors of lampreys. II. The functions of the pineal complex. J. exp. Biol., 12: 254–270.Google Scholar

Copyright information

© Swets & Zeitlinger B.V. 1975

Authors and Affiliations

  • C. L. Ralph
    • 1
  1. 1.Department of Zoology/EntomologyColorado State UniversityFt. CollinsUSA

Personalised recommendations