Mathematische Annalen

, Volume 276, Issue 3, pp 487–497 | Cite as

Sectional curvatures of holomorphic planes on a real hypersurface inP n (C)

  • Makoto Kimura
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbosa, J.L.M., Delgado, J.A.: Ruled submanifolds of space forms with mean curvature of nonzero constant length. Am. J. Math.106, 763–780 (1984)Google Scholar
  2. 2.
    Cecil, T.E.: Geometric applications of critical point theory to submanifolds of complex projective space. Nagoya Math. J.55, 5–31 (1974)Google Scholar
  3. 3.
    Cecil, T.E., Ryan, P.J.: Focal sets and real hypersurfaces in complex projective space. Trans. Am. Math. Soc.269, 481–498 (1982)Google Scholar
  4. 4.
    Kimura, M.: Real hypersurfaces and complex submanifolds in complex projective space. Trans. Am. Math. Soc.296, 137–149 (1986)Google Scholar
  5. 5.
    Maeda, Y.: On real hypersurfaces of a complex projective space. J. Math. Soc. Japan28, 529–540 (1976)Google Scholar
  6. 6.
    Nakagawa, H., Takagi, R.: On locally symmetric Kaehler submanifolds on a complex projective space. J. Math. Soc. Japan28, 638–667 (1976)Google Scholar
  7. 7.
    Okumura, M.: On some real hypersurfaces of a complex projective space. Trans. Am. Math. Soc.212, 355–364 (1975)Google Scholar
  8. 8.
    Ros, A.: A characterization of seven compact Kaehler submanifolds by holomorphic pinching. Ann. Math.121, 377–382 (1985)Google Scholar
  9. 9.
    Takeuchi, M.: Homogeneous Kaehler submanifolds in complex projective spaces. Japan J. Math.4, 171–219 (1978)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Makoto Kimura
    • 1
  1. 1.Department of MathematicsSaitama UniversityUrawa, SaitamaJapan

Personalised recommendations