Mathematische Annalen

, Volume 256, Issue 2, pp 199–214

Conducteur des représentations du groupe linéaire

  • H. Jacquet
  • I. I. Piatetski-Shapiro
  • J. Shalika
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [B-Z] Bernstein, I.N., Zelevensky, A.V.: Induced representations of reductivep-adic groups. I. Ann. Sci. École Norm. Sup.4, 441–472 (1977)Google Scholar
  2. [C] Casselman, W.: On some results of Atkin and Lehner. Math. Ann.206, 311–318 (1973).Google Scholar
  3. [D] Deligne, P.: Formes modulaires et représentations de GL(2). In: Modular functions of one variable. II. Lecture Notes in Mathematics, Vol. 349. Berlin, Heidelberg, New York Springer 1973Google Scholar
  4. [G-J] Godement, R., Jacquet, H.: Zeta functions of simple algebras. In: Lecture Notes in Mathematics, Vol. 260. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  5. [G-K] Gelfand, I.M., Kazdan, D.A.: Representations of GL(n, K) whereK is a local field. In: Lie groups and their representations, pp. 95–118. New York: Wiley 1975Google Scholar
  6. [J1] Jacquet, H.: Generic representations. In: Non commutative harmonic analysis. Marseille-Luminy 1976. In: Lecture Notes in Mathematics, Vol. 587, pp. 91–100. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  7. [J2] Jacquet, H.: PrincipalL-functions of the linear group. In: automorphic forms, representations, andL-functions, Part 2. Am. Math. Soc. 63–95 (1979)Google Scholar
  8. [J-P-S1] Jacquet, H., Piatetski-Shapiro, I.I., Shalika, J.: Automorphic forms on GL(3). I. Ann. of Math.109, 169–212 (1979)Google Scholar
  9. [J-P-S2] Jacquet, H., Piatetski-Shapiro, I.I., Shalika, J.: FacteursL et ɛ du groupe linéaire. C. R. Acad. Sci. Ser. A289, 59–61 (1979)Google Scholar
  10. [N] Novodvorsky, M.: On certain stationary groups in infinite dimensional representations of Chevalley groups. Funkcional. Anal. i. Prilozen5, 87–88 (1971). Transl. Functional Anal. Appl.5, 74–76 (1971)Google Scholar
  11. [R] Rodier, F.: Whittaker models for admissible representations of real algebraic groups. In: Harmonic analysis on homogeneous spaces. Proc. Symp. Pure Math. Am. Math. Soc. 425–430 (1976)Google Scholar
  12. [S] Shintani, T.: On an explicit formula for class-1 “Whittaker functions” on GLn overp-adic fields, Proc. Japan Acad.52, 180–182 (1976)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • H. Jacquet
    • 1
  • I. I. Piatetski-Shapiro
    • 2
  • J. Shalika
    • 3
  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA
  2. 2.Department of MathematicsThe Johns Hopkins UniversityBaltimoreUSA
  3. 3.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations