Mathematische Annalen

, Volume 273, Issue 3, pp 471–478

The Bergman kernel on uniformly extendable pseudoconvex domains

  • Klas Diederich
  • Gregor Herbort
  • Takeo Ohsawa
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Catlin, D.: Invariant metrics on pseudoconvex domains. Several complex variables. Proceedings of the 1981 Hangzhou Conference. Boston 1984Google Scholar
  2. 2.
    Diederich, K.: Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudokonvexen Gebieten. Math. Ann.189, 9–36 (1970)Google Scholar
  3. 3.
    Diederich, K., Lieb, I.: Konvexität in der komplexen Analysis. Neue Ergebnisse und Methoden. DMV-Seminar, Bd. 2. Basel, Boston, Stuttgart: Birkhäuser 1981Google Scholar
  4. 4.
    Diederich, K., Fornaess, J.E.: Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary. Ann. Math.110, 575–592 (1979)Google Scholar
  5. 5.
    Fefferman, Ch.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math.26, 1–65 (1974)Google Scholar
  6. 6.
    Herbort, G.: Logarithmic growth of the Bergman kernel for weakly pseudoconvex domains in 478-1 of finite type. Manuscr. Math.45, 69–76 (1983)Google Scholar
  7. 7.
    Hörmander, L.:L 2-estimates and existence theorems for the 478-2. Acta Math.113, 89–152 (1965)Google Scholar
  8. 8.
    Kohn, J.J.: Boundary behavior of 478-3 on weakly pseudoconvex manifolds of dimension two. J. Differ. Geom.6, 523–542 (1972)Google Scholar
  9. 9.
    Ohsawa, T.: On complete Kähler domains withC 1-boundary. Publ. RIMS Kyoto Univ.16, 929–940 (1980)Google Scholar
  10. 10.
    Ohsawa, T.: Boundary behavior of the Bergman kernel function on pseudoconvex domains. Publ. RIMS Kyoto Univ.20, 897–902 (1984)Google Scholar
  11. 11.
    Ohsawa, T., Takegoshi, K.:L 2 cohomology with weights for complete Kähler domains (in preparation)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Klas Diederich
    • 1
  • Gregor Herbort
    • 1
  • Takeo Ohsawa
    • 2
  1. 1.Fachbereich MathematikBergische Universität-GSHWuppertal 1Federal Republic of Germany
  2. 2.Research Institute of Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations