Mathematische Annalen

, Volume 273, Issue 3, pp 383–395 | Cite as

On the Hilbert-Schmidt semi-norms ofL1 of a nilpotent Lie group

  • Jean Ludwig
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Felix, R.: When is a Kirillov orbit a linear variety? Proc. Am. Math. Soc.86 (1982)Google Scholar
  2. 2.
    Howe, R.: On a connection between nilpotent Lie groups and oscillatory integrals associated to singularities. Pac. J. Math. 329–363 (1977)Google Scholar
  3. 3.
    Kirillov, A.A.: Unitary representations of nilpotent Lie groups. Usp. Math. Nauk.17, 57–110 (1962)Google Scholar
  4. 4.
    Ludwig, J.: Good ideals in the group algebra of a nilpotent Lie group. Math. Z.161, 195–210 (1978)Google Scholar
  5. 5.
    Ludwig, J.: On the spectral synthesis problem for points in the dual of a nilpotent Lie group. Ark. Mat.21 (1983)Google Scholar
  6. 6.
    Ludwig, J.: On primary ideals in the group algebra of a nilpotent Lie group. Math. Ann.262, 287–304 (1983)Google Scholar
  7. 7.
    Ludwig, J., Rosenbaum, G., Samuel, J.: The elements of bounded trace in theC *-algebra of a nilpotent Lie group. Preprint 84Google Scholar
  8. 8.
    Moore, C.C., Wolf, J.: Square integrable representations of nilpotent Lie groups. Trans. Am. Math. Soc.185, 445–462 (1973)Google Scholar
  9. 9.
    Penney, R.: Canonical objects in Kirillov theory on nilpotent Lie groups. Proc. Am. Math. Soc.66 (1977)Google Scholar
  10. 10.
    Pukanszky, L.: Unitary representations of solvable Lie groups. Ann. Sci. Ec. Norm. Super. 4° Sér. 457–608 (1971)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Jean Ludwig
    • 1
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldFederal Republic of Germany

Personalised recommendations