Mathematische Annalen

, Volume 269, Issue 3, pp 357–387 | Cite as

The smoothing components of a triangle singularity. II

  • E. Looijenga
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A.: Introduction aux groupes Arithmétiques. Paris: Hermann 1969Google Scholar
  2. 2.
    Bourbaki, N.: Groupes et algèbres de Lie, Chaps. 4–6. Paris: Hermann 1968Google Scholar
  3. 3.
    Brieskorn, E.: Die Hierarchie der 1-modularen Singularitäten. Manuscripta Math.27, 183–219 (1979)Google Scholar
  4. 4.
    Brieskorn, E.: The unfolding of the exceptional singularities. Nova Acta Leopoldina (NF)52, 65–93 (1980)Google Scholar
  5. 4a.
    Brieskorn, E.: Die Milnorgitter der exzeptionellen unimodularen Singularitäten. Bonn. Math. Schr.150 (1983)Google Scholar
  6. 5.
    Burns, D., Wahl, J.: Local contributions to global deformations of surfaces. Invent. Math.26, 67–88 (1974)Google Scholar
  7. 6.
    Damon, J.: Topological versality in versal unfoldings. In: Proc. Symp. Pure Math. Vol. XL, Part 1, pp. 255–266. Providence: Am. Math. Soc. 1983Google Scholar
  8. 7.
    Dolgachev, I.: Automorphic forms and quasi-homogeneous singularities. Funct. Anali. Pril.9, 67–68 (1975)Google Scholar
  9. 8.
    Friedman, R., Pinkham, H.: Smoothings of cusp singularities via triangle singularities. Preprint Columbia University (1982)Google Scholar
  10. 9.
    Grothendieck, A.: Fondements de la géometrie algebrique: les schémas de Hilbert. Sém. Bourbaki, exp.221 (1961)Google Scholar
  11. 10.
    Laufer, H.: On minimally elliptic singularities. Am. J. Math.99, 1257–1295 (1977)Google Scholar
  12. 11.
    Looijenga, E.: Homogeneous spaces associated to unimodal singularities Proc. Intern. Congr. Math. Helsinki, 277–281 (1978)Google Scholar
  13. 12.
    Looijenga, E.: The smoothing components of a triangle singularity. I. In: Proc. Symp. Pure Math. Vol. XL, Part 2, pp. 173–183. Providence: Am. Math. Soc. 1983Google Scholar
  14. 13.
    Looijenga, E., Peters, C.: Torelli theorems for KählerK3 surfaces. Comp. Math.42, 145–186 (1981)Google Scholar
  15. 14.
    Mayer, A.: Families ofK3 surfaces. Nagoya Math. J.48, 1–17 (1972)Google Scholar
  16. 15.
    Mérindol, J.-Y.: Surfaces normales de faisceau dualisant trivial C.R. Acad. Sci.293(A), 417–420 (1981)Google Scholar
  17. 16.
    Orlik, P., Wagreich, Ph.: Algebraic surfaces withk * action. Acta Math.138, 43–81 (1977)Google Scholar
  18. 17.
    Pham, F.: Remarque sur l'équisingularité universelle, Université de Nice (1970), see also ExposéX in Sém. géometrique analytique. Asterisque16 (1974)Google Scholar
  19. 18.
    Pinkham, H.: Groupe de monodromie des singularités unimodulaires exceptionelles. C.R. Acad. Sci.284(A), 1515–1518 (1977)Google Scholar
  20. 19.
    Pinkham, H.: Deformations of normal surface singularities with ℂ* action. Math. Ann.232, 65–84 (1978)Google Scholar
  21. 20.
    Pinkham, H.: Smoothings of theD p,q,rsingularities,p+q+r=22. In: Proc. Symp. Pure Math. Vol. XL, Part 2, pp. 373–377. Providence: Am. Math. Soc. 1983Google Scholar
  22. 21.
    Umezu, Y.: On normal projective surfaces with trivial dualizing sheef. Tokyo J. Math.4, 343–354 (1981)Google Scholar
  23. 22.
    Vinberg, E.: Discrete groups generated by reflections. Izv. Akad. Nauk SSSR, ser. math.35, 1072–1112 (1971)Google Scholar
  24. 23.
    Wahl, J.: Elliptic deformations of minimally elliptic singularities. Math. Ann.253, 241–262 (1980)Google Scholar
  25. 24.
    Wahl, J.: Derivations of negative weight and non-smoothability of certain singularities. Math. Ann.258, 383–398 (1982)Google Scholar
  26. 25.
    Wirthmüller, K.: Thesis, Regensburg (1978)Google Scholar
  27. 26.
    Pinkham, H.: Appendix to [8] Smoothings of cusp singularities via triangle singularities. Preprint Columbia University (1982)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • E. Looijenga
    • 1
  1. 1.Department of MathematicsKatholieke UniversiteitNijmegenThe Netherlands

Personalised recommendations