Mathematische Annalen

, Volume 258, Issue 2, pp 113–133

The unitary dual of Gl (3, ℝ) and Gl (4, ℝ)

  • Birgit Speh
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bargmann, V.: Irreducible unitary representations of the Lorentz group. Ann. Math.48 (1947)Google Scholar
  2. 2.
    Borel, A., Wallach, N.: Seminar on the cohomology of discrete subgroups of semisimple groups. Institute for Advanced Study 1976–1977Google Scholar
  3. 3.
    Duflo, M.: Representations unitaires irreducibles des group simples complexes de rank deux.Google Scholar
  4. 4.
    Fomin, A.I.: Quasisimple representations of Sl(3,R). Functional Anal. Appl.9 (1976)Google Scholar
  5. 5.
    Gelfand, I.M., Graev, V.: Unitary representations of the real unimodular group. Am. Math. Soc. Transl.2 (1956)Google Scholar
  6. 6.
    Knapp, A.W., Zuckerman, G.: Classification theorems for representations of semisimple Lie groups. In: Non commutative Harmonic Analysis. Lecture Notes in Mathematics 587. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  7. 7.
    Langlands, R.: On the classification of irreducible representations of real algebraic groups. Institute for Advanced Study 1973 (mimeographed notes)Google Scholar
  8. 8.
    Lipsman, R.: On the characters and equivalence of continous series representations. J. Math. Soc. Japan23 (1971)Google Scholar
  9. 9.
    Sijacki, D.: The unitary irreducible representions of Sl(3, ℝ). J. Math. Phys. (1975)Google Scholar
  10. 10.
    Speh, B.: Some results on principal series representations of Gl(n, ℝ). M.I.T. Thesis 1977Google Scholar
  11. 11.
    Speh, B.: Degenerate series representations of the universal covering group of SU (2,2)Google Scholar
  12. 12.
    Speh, B., Vogan, D.: Reducibility of generalized principal series representationsGoogle Scholar
  13. 13.
    Vakhutinski, I.: Unitary representations of Gl(3,R). Math USSR-Sb.75 (1968)Google Scholar
  14. 14.
    Vogan, D.: Lie algebra cohomology and the representions of semisimple Lie group. M.I.T. Thesis 1976Google Scholar
  15. 15.
    Zuckerman, G.: Tensorproducts of finite and infinite dimensional representations of semisimple Lie groups. Ann. Math. (1977)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Birgit Speh
    • 1
    • 2
  1. 1.Wuppertal
  2. 2.Sonderforschungsbereich Theoretische Mathmatik, UniversitätBonnGermany

Personalised recommendations