Mathematische Annalen

, Volume 300, Issue 1, pp 719–738 | Cite as

Approximation by automorphisms on smooth submanifolds of Cn

  • Franc Forstneric
Article

Mathematics Subject Classification (1991)

32M05 32E30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, R., Marsed, J.E.: Foundations of Mechanics, 2nd. ed. Reading: Benjamin 1987Google Scholar
  2. 2.
    Alexander, H.: The polynomial hull of a rectifiable curve in Cn. Am. J. Math.110, 629–640 (1988)Google Scholar
  3. 3.
    Alexander, H.: A note on polynomial hulls. Proc. Am. Math. Soc.33, 389–391 (1972)Google Scholar
  4. 4.
    Alexander, H.: Linking and holomorphic hulls. (Preprint 1992)Google Scholar
  5. 5.
    Andersén, E.: Volume-preserving automorphisms of Cn. Complex Variables14, 223–235 (1990)Google Scholar
  6. 6.
    Andersén, E., Lempert, L.: On the group of holomorphic automorphisms of Cn. Invent. Math.110, 371–388 (1992)Google Scholar
  7. 7.
    Baouendi, M.S., Treves, F.: A property of the functions and distributions annihilated by a locally integrable system of complex vector fields. Ann. Math.113, 387–421 (1981)Google Scholar
  8. 8.
    Berndtsson, B.: Integral kernels and approximation on totally real submanifolds of Cn. Math. Ann.243, 125–129 (1979)Google Scholar
  9. 9.
    Boggess, A.: CR Manifolds and the Tangential Cauchy-Riemann Complex. Boca Raton: CRC Press 1991Google Scholar
  10. 10.
    Duval, J.: Convexité rationelle des surfaces lagrangiennes. Invent. Math.104, 581–599 (1991)Google Scholar
  11. 11.
    Forstneric, F., Rosay, J.-P.: Approximation of biholomorphic mappings by automorphisms of Cn. Invent. Math.112, 323–349 (1993)Google Scholar
  12. 12.
    Forstneric, F.: Stability of polynomial convexity of totally real sets. Proc. Am. Math. Soc.96, 489–494 (1986)Google Scholar
  13. 13.
    Forstneric, F.: Complements of Runge domains and holomorphic hulls. Mich. Math. J. (to appear)Google Scholar
  14. 14.
    Harvey, F.R., Wells, R.O.: Holomorphic approximation and hyperfunction theory on aC 1 totally real submanifold of a complex manifold. Math. Ann.197, 287–318 (1972)Google Scholar
  15. 15.
    Hirsch, M.: Differential Topology. (Grad. Texts Math., vol. 33) Berlin Heidelberg New York: Springer 1976Google Scholar
  16. 16.
    Hörmander, L., Wermer, J.: Uniform approximation on compact sets in Cn. Math. Scand.23, 5–21 (1968)Google Scholar
  17. 17.
    Hörmander, L.: An Introduction to Complex Analysis in Several Variables, 3rd ed. Amsterdam: North Holland 1990Google Scholar
  18. 18.
    Range, R.M. and Siu, Y.T.:C k approximation. by holomorphic functions and 738-3 forms onC k submanifolds of a complex manifold. Math. Ann.210, 105–122 (1974)Google Scholar
  19. 19.
    Rosay, J.-P.: Straightening of arcs. (Proc. Conf. Complex Analysis, Luminy 1992) Asterisque (to appear)Google Scholar
  20. 20.
    Rosay, J.-P., Rudin, W.: Holomorphic maps from Cn to Cn. Trans. Am. Math. Soc.310, 47–86 (1988)Google Scholar
  21. 21.
    Steenrod, N.: The Topology of Fibre Bundles. Princeton: Princeton Univ. Press 1951Google Scholar
  22. 22.
    Stolzenberg, G.: Polynomially and rationally convex sets. Acta Math.109, 259–289 (1963)Google Scholar
  23. 23.
    Stout, E.L.: The Theory of Uniform Algebras. Tarrytown on Hudson: Bogden and Quigley 1971Google Scholar
  24. 24.
    Wermer, J.: The hull of a curve in Cn. Ann. Math.68, 550–561 (1958)Google Scholar
  25. 25.
    Forstneric, F.: Actions of (R,+) and (C,+) on complex manifolds. Math. Z. (to appear)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Franc Forstneric
    • 1
  1. 1.Department of MathematicsUniversity of WisconsinMadisonUSA

Personalised recommendations