Mathematische Annalen

, Volume 300, Issue 1, pp 719–738 | Cite as

Approximation by automorphisms on smooth submanifolds of C n

  • Franc Forstneric

Mathematics Subject Classification (1991)

32M05 32E30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, R., Marsed, J.E.: Foundations of Mechanics, 2nd. ed. Reading: Benjamin 1987Google Scholar
  2. 2.
    Alexander, H.: The polynomial hull of a rectifiable curve in Cn. Am. J. Math.110, 629–640 (1988)Google Scholar
  3. 3.
    Alexander, H.: A note on polynomial hulls. Proc. Am. Math. Soc.33, 389–391 (1972)Google Scholar
  4. 4.
    Alexander, H.: Linking and holomorphic hulls. (Preprint 1992)Google Scholar
  5. 5.
    Andersén, E.: Volume-preserving automorphisms of Cn. Complex Variables14, 223–235 (1990)Google Scholar
  6. 6.
    Andersén, E., Lempert, L.: On the group of holomorphic automorphisms of Cn. Invent. Math.110, 371–388 (1992)Google Scholar
  7. 7.
    Baouendi, M.S., Treves, F.: A property of the functions and distributions annihilated by a locally integrable system of complex vector fields. Ann. Math.113, 387–421 (1981)Google Scholar
  8. 8.
    Berndtsson, B.: Integral kernels and approximation on totally real submanifolds of Cn. Math. Ann.243, 125–129 (1979)Google Scholar
  9. 9.
    Boggess, A.: CR Manifolds and the Tangential Cauchy-Riemann Complex. Boca Raton: CRC Press 1991Google Scholar
  10. 10.
    Duval, J.: Convexité rationelle des surfaces lagrangiennes. Invent. Math.104, 581–599 (1991)Google Scholar
  11. 11.
    Forstneric, F., Rosay, J.-P.: Approximation of biholomorphic mappings by automorphisms of Cn. Invent. Math.112, 323–349 (1993)Google Scholar
  12. 12.
    Forstneric, F.: Stability of polynomial convexity of totally real sets. Proc. Am. Math. Soc.96, 489–494 (1986)Google Scholar
  13. 13.
    Forstneric, F.: Complements of Runge domains and holomorphic hulls. Mich. Math. J. (to appear)Google Scholar
  14. 14.
    Harvey, F.R., Wells, R.O.: Holomorphic approximation and hyperfunction theory on aC 1 totally real submanifold of a complex manifold. Math. Ann.197, 287–318 (1972)Google Scholar
  15. 15.
    Hirsch, M.: Differential Topology. (Grad. Texts Math., vol. 33) Berlin Heidelberg New York: Springer 1976Google Scholar
  16. 16.
    Hörmander, L., Wermer, J.: Uniform approximation on compact sets in Cn. Math. Scand.23, 5–21 (1968)Google Scholar
  17. 17.
    Hörmander, L.: An Introduction to Complex Analysis in Several Variables, 3rd ed. Amsterdam: North Holland 1990Google Scholar
  18. 18.
    Range, R.M. and Siu, Y.T.:C k approximation. by holomorphic functions and 738-3 forms onC k submanifolds of a complex manifold. Math. Ann.210, 105–122 (1974)Google Scholar
  19. 19.
    Rosay, J.-P.: Straightening of arcs. (Proc. Conf. Complex Analysis, Luminy 1992) Asterisque (to appear)Google Scholar
  20. 20.
    Rosay, J.-P., Rudin, W.: Holomorphic maps from Cn to Cn. Trans. Am. Math. Soc.310, 47–86 (1988)Google Scholar
  21. 21.
    Steenrod, N.: The Topology of Fibre Bundles. Princeton: Princeton Univ. Press 1951Google Scholar
  22. 22.
    Stolzenberg, G.: Polynomially and rationally convex sets. Acta Math.109, 259–289 (1963)Google Scholar
  23. 23.
    Stout, E.L.: The Theory of Uniform Algebras. Tarrytown on Hudson: Bogden and Quigley 1971Google Scholar
  24. 24.
    Wermer, J.: The hull of a curve in Cn. Ann. Math.68, 550–561 (1958)Google Scholar
  25. 25.
    Forstneric, F.: Actions of (R,+) and (C,+) on complex manifolds. Math. Z. (to appear)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Franc Forstneric
    • 1
  1. 1.Department of MathematicsUniversity of WisconsinMadisonUSA

Personalised recommendations