Mathematische Annalen

, Volume 300, Issue 1, pp 681–691 | Cite as

The cone of curves of a K3 surface

  • Sándor J. Kovács
Article

Mathematics Subject Classification (1991)

14J28 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BPV]
    Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces, Springer 1984Google Scholar
  2. [CKM]
    Clemens H., Kollár, J., Mori, S.: Higher dimensional complex geometry, Astérisque 166 (1988)Google Scholar
  3. [IR]
    Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, Springer, Graduate Text in Mathematics 84, 1990Google Scholar
  4. [Kaw]
    Kawamata, Y.: Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. Math. 127, 93–163, (1988)Google Scholar
  5. [Mor]
    Morrison, D.: On K3 surfaces with large Picard number, Invent. math. 75, 105–121 (1984)Google Scholar
  6. [Nik 1]
    Nikulin, V.V.: Integral symmetric bilinear forms and some of their applications. Izv. Akad. Nauk. SSSR 43, 111–177 (1979); Math. USSR Izve. 14, 103–167 (1980)Google Scholar
  7. [Nik 2]
    Nikulin, V.V.: On factor groups of the automorphism groups of hyperbolic forms modulo subgroups generated by 2-reflections. Dokl. Akad. Nauk. SSSR 248, 1307–1309 (1979); Soviet Math. Dokl. 20, 1156–1158 (1979)Google Scholar
  8. [Nik 3]
    Nikulin, V.V.: Factor groups of the automorphism groups of hyperbolic forms modulo subgroups generated by 2-reflections: Algebro-geometric applications. Itogi Nauki: Sovremennye Problemy Mat, vol. 18., VINITI, Moscow, 1981, 3–114; J. Sov. Math. 22, no. 4 (1983)Google Scholar
  9. [Nik 4]
    Nikulin, V.V.: Surfaces of type K3 with a finite automorphism group and a Picard group of rank three. Trudy Mat. Inst. Steklov 165 (1984); Proc. of the Steklov Institute of Math., Issue 3, 131–155, 1985Google Scholar
  10. [PS-S]
    Piateckii-Shapiro, I.I., Shafarevich, I.R.: A Torelli theorem for algebraic surfaces of type K3, Izv. Akad. Nauk. SSSR 35, 530–572 (1971); Math. USSR Izv. 5, 547–587 (1971)Google Scholar
  11. [Ser]
    Serre, J.-P.: A Course in Arithmetic, Springer, Graduate Text in Mathematics 7, 1970.Google Scholar
  12. [Sh-In]
    Shioda, T., Inose, H.: On singular K3 surfaces. Complex analysis and algebraic geometry: papers dedicated to K. Kodaira. Iwanami Shoten and Cambridge University Press 1977, 119–136Google Scholar
  13. [Ste]
    Sterk, H.: Finiteness Results for Algebraic K3 surfaces, Math. Z. 189, 507–513 (1985)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Sándor J. Kovács
    • 1
  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations