Advertisement

Mathematische Annalen

, Volume 300, Issue 1, pp 463–520 | Cite as

A general version of the fundamental theorem of asset pricing

  • Freddy Delbaen
  • Walter Schachermayer
Article

Keywords

Asset Price General Version Fundamental Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansel, J.P., Stricker, C. (1992): Couverture des actifs contingents. (Preprint)Google Scholar
  2. Ansel, J.P., Stricker, C. (1993): Lois de martingale, densités et décomposition de Föllmer-Schweizer. Ann. Inst. Henri Poincaré28, 375–392Google Scholar
  3. Artzner, Ph., Heath, D. (1990): Completeness and non unique pricing. Strasborg: Université Louis Pasteur (Preprint)Google Scholar
  4. Back, K., Pliska, S. (1991): On the fundamental theorem of asset pricing with an infinite state space. J. Math. Econ.20, 1–18Google Scholar
  5. Banach, S. (1932): Théorie des opérations linéaires. Monogr. Mat., Warsawa 1. Reprint by Chelsea Scientific Books (1963)Google Scholar
  6. Black, F., Scholes, M. (1973): The pricing of options and corporate liabilities. J. Pol. Econ.81, 637–654Google Scholar
  7. Chou, C.S., Meyer, P.A., Stricker, S. (1980): Sur les intégrales stochastiques de processus prévisibles non bornés. In: Azéma, J., Yor, M. (eds.) Séminaire de probabilités XIV. (Lect. Notes Math., vol. 784, pp. 128–139) Berlin, Heidelberg New York: SpringerGoogle Scholar
  8. Dalang, R.C., Morton, A., Willinger, W. (1989): Equivalent martingale measures and no-arbitrage in stochastic securities market models. Stochastics and Stochastics Rep.29, 185–202Google Scholar
  9. Delbaen, F. (1992): Representing martingale measures when asset prices are continuous and bounded. Math. Finance2, 107–130Google Scholar
  10. Delbaen, F., Schachermayer, W. (1993): Arbitrage and free lunch with bounded risk for unbounded continuous processes. (to appear)Google Scholar
  11. Delbaen, F., Schachermayer, W. (1993b): Forthcoming paper on Bes3 (1) processGoogle Scholar
  12. Delbaen, F., Schachermayer, W. (1994): An inequality for the predictable projection of an adapted process. (in preparation)Google Scholar
  13. Dellacherie, C., Meyer, P. (1980): Probabilités et potentiel, chap. V à VIII, théorie des martingales. Paris: HermannGoogle Scholar
  14. Diestel, J. (1975): Geometry of Banach spaces-selected topics. (Lect. Notes Math., vol. 485) Berlin Heidelberg New York: SpringerGoogle Scholar
  15. Dothan, M. (1990): Prices in financial markets. New York: Oxford University PressGoogle Scholar
  16. Duffie, D. (1992): Dynamic asset pricing theory. Princeton: Princeton University PressGoogle Scholar
  17. Duffie, D., Huang, C.F. (1986): Multiperiod security markets with differential information. J. Math. Econ.15, 283–303Google Scholar
  18. Dybvig, P., Ross, S. (1987): Arbitrage. In: Eatwell, J., Milgate, M., Newman, P. (eds.) The new Palgrave dictionary of economics, vol. 1, pp. 100–106, London: MacmillanGoogle Scholar
  19. Émery, M. (1979): Une topologie sur l'espace des semimartingales. In: Dellacherie, C. et al. (eds.) Séminaire de probabilités XIII. (Lect. Notes Math. vol. 721, pp. 260–280) Berlin Heidelberg New York: SpringerGoogle Scholar
  20. Émery, M. (1980): Compensation de processus non localement intégrables. In: Azéma, J., Yor, M. (eds.) Séminaire de probabilités XIV (Lect. Notes Math., vol. 784, pp. 152–160) Berlin Heidelberg New York: SpringerGoogle Scholar
  21. Föllmer, H., Schweizer, M. (1991): Hedging of contingent claims under incomplete information. In: Davis M.H.A., Elliott, R.J., (eds.) Applied stochastic analysis. (Stochastic Monogr., vol. 5, pp. 389–414) London New York: Gordon and BreachGoogle Scholar
  22. Grothendieck, A. (1954): Espaces vectoriels topologiques. São Paulo: Sociedade de Matematica de Sào PauloGoogle Scholar
  23. Harrison, M., Kreps, D. (1979): Martingales and arbitrage in multiperiod security markets. J. Econ. Theory20, 381–408Google Scholar
  24. Harrison, M., Pliska, S. (1981): Martingales and stochastic integrals in the theory of continuous trading. Stochastic Processes Appl.11, 215–260Google Scholar
  25. Huang, C.F., Litzenberger, R. (1988): Foundations for financial economics. Amsterdam: Noord HollandGoogle Scholar
  26. Jacka, S.D. (1992): A martingale representation result and an application to incomplete financial markets. Math. Finance2, 239–250Google Scholar
  27. Kabanov, Yu.M., Kramkov, D.O. (1993): No arbitrage and equivalent martingale measures: An elementary proof of the Harrison-Pliska theorem. Moscow: Central Economics and Mathematics Institute. (Preprint)Google Scholar
  28. Karatzas, I., Lehoczky, J.P., Shreve, S.E., Xu, G.L. (1991): Martingale and duality methods for utility maximisation in an incomplete Market. SIAM J. Control Optimization29, 702–730Google Scholar
  29. Karatzas, I., Shreve, S.E. (1988): Brownian motion and stochastic calculus. Berlin Heidelberg New York: SpringerGoogle Scholar
  30. Kreps, D. (1981): Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Econ.8, 15–35Google Scholar
  31. Kusuoka, S. (1993): A remark on arbitrage and martingale and martingale measures. Publ. Res. Inst. Math. Sci. (to appear)Google Scholar
  32. Lakner, P. (1992): Martingale measures for right continuous processes which are bounded below. (Preprint)Google Scholar
  33. Lépingle, D. (1978): Une inégalité de martingales. In: Dellacherie, C. et al. (eds.) Sémin. de Probab. XII. (Lect. Notes Math., vol. 649, pp. 134–137) Berlin Heidelberg New York: SpringerGoogle Scholar
  34. Loève, M. (1978): Probability theory, 4th ed. Berlin Heidelberg New York: SpringerGoogle Scholar
  35. Mc Beth, D.W. (1991): On the existence of equivalent martingale measures. Thesis Cornell UniversityGoogle Scholar
  36. Merton, R. (1973): The theory of rational option pricing. Bell J. Econ. Manag. Sci.4, 141–183Google Scholar
  37. Memin, J. (1980): Espaces de semi martingales et changement de probabilité. Z. W. Verw. Geb.52, 9–39Google Scholar
  38. Meyer, P.A. (1976): Un cours sur les intégrales stochastiques. In: Meyer, P.A. (ed.) Séminaire de Probabilité X. (Lect. Notes Math., vol. 511, pp. 245–400) Berlin Heidelberg New York: SpringerGoogle Scholar
  39. Protter, Ph (1990): Stochastic integration and differential equations, a new approach. Berlin Heidelberg New York: SpringerGoogle Scholar
  40. Revuz, D., Yor, M. (1991): Continuous martingales and Brownian motion. Berlin Heidelberg New York: SpringerGoogle Scholar
  41. Rogers, C. (1993): Equivalent martingale measures and no-arbitrage. Queen Mary and Westfield College (Preprint)Google Scholar
  42. Schachermayer, W. (1992): A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time. Insur. Math. Econ.11, 1–9Google Scholar
  43. Schachermayer, W. (1993): Martingale measures for discrete time processes with infinite horizon. Math. Finance, Vol 4, 1994, 25–56Google Scholar
  44. Schachermayer, W. (1993b). A counterexample to several problems in the theory of asset pricing. Math. Finance, Vol 3, 1993, 217–230Google Scholar
  45. Stein, E. (1970): Topics in harmonic analysis. (Ann. Math. Stud., vol. 63) Princeton: Princeton University PressGoogle Scholar
  46. Stricker, C. (1990): Arbitrage et lois de martingale. Ann. Inst. Henri Poincaré26, 451–460Google Scholar
  47. Yan, J.A. (1980): Caractérisation d'une classe d'ensembles convexes deL 1 ouH 1. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilité XIV. (Lect. Notes Math., vol. 784, pp. 220–222) Berlin Heidelberg New York: SpringerGoogle Scholar
  48. Yor, M. (1978): Sous-espaces denses dansL 1 ouH 1 et représentation des martingales. In: Dellacherie, C. et al. (es.) Séminaire de Probabilité XII. (Lect. Notes Math., vol. 649, pp. 265–309) Berlin Heidelberg New York: SpringerGoogle Scholar
  49. Yor, M. (1978b): Inegalités entre processus minces et applications. C.R. Acad. Sci., Paris, Ser. A286, 799–801Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Freddy Delbaen
    • 1
  • Walter Schachermayer
    • 2
  1. 1.Department of Mathematics, Institute of Actuarial StudiesVrije Universiteit BrusselBrusselsBelgium
  2. 2.Institut für StatistikUniversität WienWienAustria

Personalised recommendations