Mathematische Annalen

, Volume 300, Issue 1, pp 463–520 | Cite as

A general version of the fundamental theorem of asset pricing

  • Freddy Delbaen
  • Walter Schachermayer
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansel, J.P., Stricker, C. (1992): Couverture des actifs contingents. (Preprint)Google Scholar
  2. Ansel, J.P., Stricker, C. (1993): Lois de martingale, densités et décomposition de Föllmer-Schweizer. Ann. Inst. Henri Poincaré28, 375–392Google Scholar
  3. Artzner, Ph., Heath, D. (1990): Completeness and non unique pricing. Strasborg: Université Louis Pasteur (Preprint)Google Scholar
  4. Back, K., Pliska, S. (1991): On the fundamental theorem of asset pricing with an infinite state space. J. Math. Econ.20, 1–18Google Scholar
  5. Banach, S. (1932): Théorie des opérations linéaires. Monogr. Mat., Warsawa 1. Reprint by Chelsea Scientific Books (1963)Google Scholar
  6. Black, F., Scholes, M. (1973): The pricing of options and corporate liabilities. J. Pol. Econ.81, 637–654Google Scholar
  7. Chou, C.S., Meyer, P.A., Stricker, S. (1980): Sur les intégrales stochastiques de processus prévisibles non bornés. In: Azéma, J., Yor, M. (eds.) Séminaire de probabilités XIV. (Lect. Notes Math., vol. 784, pp. 128–139) Berlin, Heidelberg New York: SpringerGoogle Scholar
  8. Dalang, R.C., Morton, A., Willinger, W. (1989): Equivalent martingale measures and no-arbitrage in stochastic securities market models. Stochastics and Stochastics Rep.29, 185–202Google Scholar
  9. Delbaen, F. (1992): Representing martingale measures when asset prices are continuous and bounded. Math. Finance2, 107–130Google Scholar
  10. Delbaen, F., Schachermayer, W. (1993): Arbitrage and free lunch with bounded risk for unbounded continuous processes. (to appear)Google Scholar
  11. Delbaen, F., Schachermayer, W. (1993b): Forthcoming paper on Bes3 (1) processGoogle Scholar
  12. Delbaen, F., Schachermayer, W. (1994): An inequality for the predictable projection of an adapted process. (in preparation)Google Scholar
  13. Dellacherie, C., Meyer, P. (1980): Probabilités et potentiel, chap. V à VIII, théorie des martingales. Paris: HermannGoogle Scholar
  14. Diestel, J. (1975): Geometry of Banach spaces-selected topics. (Lect. Notes Math., vol. 485) Berlin Heidelberg New York: SpringerGoogle Scholar
  15. Dothan, M. (1990): Prices in financial markets. New York: Oxford University PressGoogle Scholar
  16. Duffie, D. (1992): Dynamic asset pricing theory. Princeton: Princeton University PressGoogle Scholar
  17. Duffie, D., Huang, C.F. (1986): Multiperiod security markets with differential information. J. Math. Econ.15, 283–303Google Scholar
  18. Dybvig, P., Ross, S. (1987): Arbitrage. In: Eatwell, J., Milgate, M., Newman, P. (eds.) The new Palgrave dictionary of economics, vol. 1, pp. 100–106, London: MacmillanGoogle Scholar
  19. Émery, M. (1979): Une topologie sur l'espace des semimartingales. In: Dellacherie, C. et al. (eds.) Séminaire de probabilités XIII. (Lect. Notes Math. vol. 721, pp. 260–280) Berlin Heidelberg New York: SpringerGoogle Scholar
  20. Émery, M. (1980): Compensation de processus non localement intégrables. In: Azéma, J., Yor, M. (eds.) Séminaire de probabilités XIV (Lect. Notes Math., vol. 784, pp. 152–160) Berlin Heidelberg New York: SpringerGoogle Scholar
  21. Föllmer, H., Schweizer, M. (1991): Hedging of contingent claims under incomplete information. In: Davis M.H.A., Elliott, R.J., (eds.) Applied stochastic analysis. (Stochastic Monogr., vol. 5, pp. 389–414) London New York: Gordon and BreachGoogle Scholar
  22. Grothendieck, A. (1954): Espaces vectoriels topologiques. São Paulo: Sociedade de Matematica de Sào PauloGoogle Scholar
  23. Harrison, M., Kreps, D. (1979): Martingales and arbitrage in multiperiod security markets. J. Econ. Theory20, 381–408Google Scholar
  24. Harrison, M., Pliska, S. (1981): Martingales and stochastic integrals in the theory of continuous trading. Stochastic Processes Appl.11, 215–260Google Scholar
  25. Huang, C.F., Litzenberger, R. (1988): Foundations for financial economics. Amsterdam: Noord HollandGoogle Scholar
  26. Jacka, S.D. (1992): A martingale representation result and an application to incomplete financial markets. Math. Finance2, 239–250Google Scholar
  27. Kabanov, Yu.M., Kramkov, D.O. (1993): No arbitrage and equivalent martingale measures: An elementary proof of the Harrison-Pliska theorem. Moscow: Central Economics and Mathematics Institute. (Preprint)Google Scholar
  28. Karatzas, I., Lehoczky, J.P., Shreve, S.E., Xu, G.L. (1991): Martingale and duality methods for utility maximisation in an incomplete Market. SIAM J. Control Optimization29, 702–730Google Scholar
  29. Karatzas, I., Shreve, S.E. (1988): Brownian motion and stochastic calculus. Berlin Heidelberg New York: SpringerGoogle Scholar
  30. Kreps, D. (1981): Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Econ.8, 15–35Google Scholar
  31. Kusuoka, S. (1993): A remark on arbitrage and martingale and martingale measures. Publ. Res. Inst. Math. Sci. (to appear)Google Scholar
  32. Lakner, P. (1992): Martingale measures for right continuous processes which are bounded below. (Preprint)Google Scholar
  33. Lépingle, D. (1978): Une inégalité de martingales. In: Dellacherie, C. et al. (eds.) Sémin. de Probab. XII. (Lect. Notes Math., vol. 649, pp. 134–137) Berlin Heidelberg New York: SpringerGoogle Scholar
  34. Loève, M. (1978): Probability theory, 4th ed. Berlin Heidelberg New York: SpringerGoogle Scholar
  35. Mc Beth, D.W. (1991): On the existence of equivalent martingale measures. Thesis Cornell UniversityGoogle Scholar
  36. Merton, R. (1973): The theory of rational option pricing. Bell J. Econ. Manag. Sci.4, 141–183Google Scholar
  37. Memin, J. (1980): Espaces de semi martingales et changement de probabilité. Z. W. Verw. Geb.52, 9–39Google Scholar
  38. Meyer, P.A. (1976): Un cours sur les intégrales stochastiques. In: Meyer, P.A. (ed.) Séminaire de Probabilité X. (Lect. Notes Math., vol. 511, pp. 245–400) Berlin Heidelberg New York: SpringerGoogle Scholar
  39. Protter, Ph (1990): Stochastic integration and differential equations, a new approach. Berlin Heidelberg New York: SpringerGoogle Scholar
  40. Revuz, D., Yor, M. (1991): Continuous martingales and Brownian motion. Berlin Heidelberg New York: SpringerGoogle Scholar
  41. Rogers, C. (1993): Equivalent martingale measures and no-arbitrage. Queen Mary and Westfield College (Preprint)Google Scholar
  42. Schachermayer, W. (1992): A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time. Insur. Math. Econ.11, 1–9Google Scholar
  43. Schachermayer, W. (1993): Martingale measures for discrete time processes with infinite horizon. Math. Finance, Vol 4, 1994, 25–56Google Scholar
  44. Schachermayer, W. (1993b). A counterexample to several problems in the theory of asset pricing. Math. Finance, Vol 3, 1993, 217–230Google Scholar
  45. Stein, E. (1970): Topics in harmonic analysis. (Ann. Math. Stud., vol. 63) Princeton: Princeton University PressGoogle Scholar
  46. Stricker, C. (1990): Arbitrage et lois de martingale. Ann. Inst. Henri Poincaré26, 451–460Google Scholar
  47. Yan, J.A. (1980): Caractérisation d'une classe d'ensembles convexes deL 1 ouH 1. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilité XIV. (Lect. Notes Math., vol. 784, pp. 220–222) Berlin Heidelberg New York: SpringerGoogle Scholar
  48. Yor, M. (1978): Sous-espaces denses dansL 1 ouH 1 et représentation des martingales. In: Dellacherie, C. et al. (es.) Séminaire de Probabilité XII. (Lect. Notes Math., vol. 649, pp. 265–309) Berlin Heidelberg New York: SpringerGoogle Scholar
  49. Yor, M. (1978b): Inegalités entre processus minces et applications. C.R. Acad. Sci., Paris, Ser. A286, 799–801Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Freddy Delbaen
    • 1
  • Walter Schachermayer
    • 2
  1. 1.Department of Mathematics, Institute of Actuarial StudiesVrije Universiteit BrusselBrusselsBelgium
  2. 2.Institut für StatistikUniversität WienWienAustria

Personalised recommendations