Advertisement

Mathematische Annalen

, Volume 300, Issue 1, pp 341–363 | Cite as

The structure of totally disconnected locally compact groups

  • G. Willis
Article

Mathematics Subject Classification (1991)

22A05 20E08 22C05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bo]
    N. Bourbaki, Elements of mathematics: general topology, Palo Alto-London, 1966 (English translation of Éléments de mathématique, topologie générale, Paris 1942)Google Scholar
  2. [Dan]
    D. van Dantzig, Zur topologischen Algebra III. Brouwersche und Cantorsche Gruppen. Compos. Math.3 (1936), 408–426Google Scholar
  3. [GM]
    S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math.246 (1971), 1–40Google Scholar
  4. [HR]
    E. Hewitt, K.A. Ross, Abstract harmonic analysis, Berlin-Göttingen-Heidelberg 1963Google Scholar
  5. [HM]
    K.H. Hofmann, A. Mukherjea, Concentration functions and a class of non-compact groups. Math. Ann.256 (1981), 535–548Google Scholar
  6. [Jac]
    N. Jacobson, Basic algebra II. San Francisco 1980Google Scholar
  7. [MZ]
    D. Montgomery, L. Zippin, Topological transformation groups, New York 1955Google Scholar
  8. [Pal]
    T.W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mt. J. Math.8 (1978), 683–741Google Scholar
  9. [Pon]
    L.S. Pontryagin, Topological groups. New York-London-Paris 1966Google Scholar
  10. [RW]
    J.M. Rosenblatt, G.A. Willis, Concentration functions in locally compact groups, (to appear)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • G. Willis
    • 1
  1. 1.Department of MathematicsThe University of NewcastleNewcastleAustralia

Personalised recommendations